Limits...
Proteomic analysis of the regenerating liver following 2/3 partial hepatectomy in rats.

Chen XG, Xu CS - Biol. Res. (2014)

Bottom Line: Protein samples extracted from the sham-operated and the regenerating rat livers at 6, 12, 24, 72, 120 and 168 h after PH were separated by IEF/SDS-PAGE and then analyzed by MALDI-TOF/TOF mass spectrometry.According to the expression pattern analysis combined with gene functional analysis, it showed that lipid and carbohydrate metabolism were enhanced at the early phase of LR and continue throughout the regeneration process.Additionally, we also revealed the role of Cdc42 (cell division cycle 42) in the termination of LR.

View Article: PubMed Central - PubMed

Affiliation: Animal Science and Technology School, Henan University of Science and Technology, Luoyang, Henan Province, 471003, China. cxguang1015@126.com.

ABSTRACT

Background: Liver regeneration (LR) after 2/3 partial hepatectomy (PH) is one of the most studied models of cell, organ, and tissue regeneration. Although the transcriptional profile analysis of regenerating liver has been carried out by many reserachers, the dynamic protein expression profile during LR has been rarely reported up to date. Therefore, this study aims to detect the global proteomic profile of the regenerating rat liver following 2/3 hepatectomy, thereby gaining some insights into hepatic regeneration mechanism.

Results: Protein samples extracted from the sham-operated and the regenerating rat livers at 6, 12, 24, 72, 120 and 168 h after PH were separated by IEF/SDS-PAGE and then analyzed by MALDI-TOF/TOF mass spectrometry. Compared to sham-operated groups, there were totally 220 differentially expressed proteins (including 156 up-regulated, 62 down-regulated, and 2 up/down-regulated ones) identified in the regenerating rat livers, and most of them have not been previously related to liver regeneration. According to the expression pattern analysis combined with gene functional analysis, it showed that lipid and carbohydrate metabolism were enhanced at the early phase of LR and continue throughout the regeneration process. Ingenuity Pathway Analysis indicated that YWHAE protein (one of members of the 14-3-3 protein family) was located at the center of pathway networks at all the timepoints after 2/3 hepatectomy under our experimental conditions, maybe suggesting a central role of this protein in regulating liver regeneration. Additionally, we also revealed the role of Cdc42 (cell division cycle 42) in the termination of LR.

Conclusions: For the first time, our proteomic analysis suggested an important role of YWHAE and pathway mediated by this protein in liver regeneration, which might be helpful in expanding our understanding of LR amd unraveling the mechanisms of LR.

No MeSH data available.


Related in: MedlinePlus

Representative 2-DE maps of rat liver tissues corresponding to sham operation group (left) and PH group (right) at 24 hour after PH. Protein spots were stained with colloidal Coomassie stain. The 2-DE was repeated at least three times for each group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4335715&req=5

Fig3: Representative 2-DE maps of rat liver tissues corresponding to sham operation group (left) and PH group (right) at 24 hour after PH. Protein spots were stained with colloidal Coomassie stain. The 2-DE was repeated at least three times for each group.

Mentions: We collected regenerating liver samples from 6h through 168h post 2/3 PH, and analyzed protein expression profiling at six different timepoints after surgery.To save space, we only showed the 2-DE maps of SO group and PH group at 24 hour because this is the time point when DNA and protein synthesis are most active (Figure 3). Among 2546 and 2554 differentially expressed proteins identified respectively in sham-operated groups and 2/3 hepatecyomized groups, 220 showed statistically significant differences (P < 0.05) in levels between PH group and SO group. These proteins were also called LR-related proteins whose volume changes in sham-operated rats and 2/3 hepatectomized rats were detailedly shown in Additional file 1: Table S1 of the Supporting Information. They were categorized into six groups based on expression changes: group 1, 125 proteins were up-regulated after 2/3 PH; group 2, 26 newly induced proteins were detected only in PH group but not in SO group; group 3, 5 proteins were down-regulated only in SO sample; group 4, 28 proteins were down-regulated after 2/3 PH; group 5, 34 proteins were below detection limit in PH group (detected only in SO sample but not in 2/3 PH sample); and group 6, 2 proteins were up-regulated at early phase but down-regulated at late phase during LR. In a general sense, proteins in group 1, 2 and 3 (totally 156) were viewed as up-regulated proteins during LR, and ones in group 4 and 5 (totally 62) as down-regulated proteins, and the remaining two in group 6 as up/down-regulated proteins.Figure 3


Proteomic analysis of the regenerating liver following 2/3 partial hepatectomy in rats.

Chen XG, Xu CS - Biol. Res. (2014)

Representative 2-DE maps of rat liver tissues corresponding to sham operation group (left) and PH group (right) at 24 hour after PH. Protein spots were stained with colloidal Coomassie stain. The 2-DE was repeated at least three times for each group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4335715&req=5

Fig3: Representative 2-DE maps of rat liver tissues corresponding to sham operation group (left) and PH group (right) at 24 hour after PH. Protein spots were stained with colloidal Coomassie stain. The 2-DE was repeated at least three times for each group.
Mentions: We collected regenerating liver samples from 6h through 168h post 2/3 PH, and analyzed protein expression profiling at six different timepoints after surgery.To save space, we only showed the 2-DE maps of SO group and PH group at 24 hour because this is the time point when DNA and protein synthesis are most active (Figure 3). Among 2546 and 2554 differentially expressed proteins identified respectively in sham-operated groups and 2/3 hepatecyomized groups, 220 showed statistically significant differences (P < 0.05) in levels between PH group and SO group. These proteins were also called LR-related proteins whose volume changes in sham-operated rats and 2/3 hepatectomized rats were detailedly shown in Additional file 1: Table S1 of the Supporting Information. They were categorized into six groups based on expression changes: group 1, 125 proteins were up-regulated after 2/3 PH; group 2, 26 newly induced proteins were detected only in PH group but not in SO group; group 3, 5 proteins were down-regulated only in SO sample; group 4, 28 proteins were down-regulated after 2/3 PH; group 5, 34 proteins were below detection limit in PH group (detected only in SO sample but not in 2/3 PH sample); and group 6, 2 proteins were up-regulated at early phase but down-regulated at late phase during LR. In a general sense, proteins in group 1, 2 and 3 (totally 156) were viewed as up-regulated proteins during LR, and ones in group 4 and 5 (totally 62) as down-regulated proteins, and the remaining two in group 6 as up/down-regulated proteins.Figure 3

Bottom Line: Protein samples extracted from the sham-operated and the regenerating rat livers at 6, 12, 24, 72, 120 and 168 h after PH were separated by IEF/SDS-PAGE and then analyzed by MALDI-TOF/TOF mass spectrometry.According to the expression pattern analysis combined with gene functional analysis, it showed that lipid and carbohydrate metabolism were enhanced at the early phase of LR and continue throughout the regeneration process.Additionally, we also revealed the role of Cdc42 (cell division cycle 42) in the termination of LR.

View Article: PubMed Central - PubMed

Affiliation: Animal Science and Technology School, Henan University of Science and Technology, Luoyang, Henan Province, 471003, China. cxguang1015@126.com.

ABSTRACT

Background: Liver regeneration (LR) after 2/3 partial hepatectomy (PH) is one of the most studied models of cell, organ, and tissue regeneration. Although the transcriptional profile analysis of regenerating liver has been carried out by many reserachers, the dynamic protein expression profile during LR has been rarely reported up to date. Therefore, this study aims to detect the global proteomic profile of the regenerating rat liver following 2/3 hepatectomy, thereby gaining some insights into hepatic regeneration mechanism.

Results: Protein samples extracted from the sham-operated and the regenerating rat livers at 6, 12, 24, 72, 120 and 168 h after PH were separated by IEF/SDS-PAGE and then analyzed by MALDI-TOF/TOF mass spectrometry. Compared to sham-operated groups, there were totally 220 differentially expressed proteins (including 156 up-regulated, 62 down-regulated, and 2 up/down-regulated ones) identified in the regenerating rat livers, and most of them have not been previously related to liver regeneration. According to the expression pattern analysis combined with gene functional analysis, it showed that lipid and carbohydrate metabolism were enhanced at the early phase of LR and continue throughout the regeneration process. Ingenuity Pathway Analysis indicated that YWHAE protein (one of members of the 14-3-3 protein family) was located at the center of pathway networks at all the timepoints after 2/3 hepatectomy under our experimental conditions, maybe suggesting a central role of this protein in regulating liver regeneration. Additionally, we also revealed the role of Cdc42 (cell division cycle 42) in the termination of LR.

Conclusions: For the first time, our proteomic analysis suggested an important role of YWHAE and pathway mediated by this protein in liver regeneration, which might be helpful in expanding our understanding of LR amd unraveling the mechanisms of LR.

No MeSH data available.


Related in: MedlinePlus