Limits...
Glutathione supplementation suppresses muscle fatigue induced by prolonged exercise via improved aerobic metabolism.

Aoi W, Ogaya Y, Takami M, Konishi T, Sauchi Y, Park EY, Wada S, Sato K, Higashi A - J Int Soc Sports Nutr (2015)

Bottom Line: After 2 weeks, the exercise groups ran on a treadmill at 25 m/min for 30 min.Immediately post-exercise, intermuscular pH was measured, and hind limb muscle and blood samples were collected to measure biochemical parameters.Then, they exercised on a cycle ergometer at 40% maximal heart rate for 60 min.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan.

ABSTRACT

Backgrounds: Glutathione is an endogenous redox couple in animal cells and plays important roles in antioxidant defense and detoxification, although it is unknown if oral glutathione supplementation affects exercise-induced physiological changes. The present study investigated the effect of glutathione intake on exercise-induced muscle metabolism and fatigue in mice and humans.

Methods: ICR mice were divided into 4 groups: sedentary control, sedentary supplemented with glutathione (2.0%, 5 μL/g body weight), exercise control, and exercise supplemented with glutathione. After 2 weeks, the exercise groups ran on a treadmill at 25 m/min for 30 min. Immediately post-exercise, intermuscular pH was measured, and hind limb muscle and blood samples were collected to measure biochemical parameters. In a double-blind, cross-over study, 8 healthy men (35.9 ± 2.0 y) were administered either glutathione (1 g/d) or placebo for 2 weeks. Then, they exercised on a cycle ergometer at 40% maximal heart rate for 60 min. Psychological state and blood biochemical parameters were examined after exercise.

Results: In the mouse experiment, post-exercise plasma non-esterified fatty acids were significantly lower in the exercise supplemented with glutathione group (820 ± 44 mEq/L) compared with the exercise control group (1152 ± 61 mEq/L). Intermuscular pH decreased with exercise (7.17 ± 0.01); however, this reduction was prevented by glutathione supplementation (7.23 ± 0.02). The peroxisome proliferator-activated receptor-γ coactivator-1α protein and mitochondrial DNA levels were significantly higher in the sedentary supplemented with glutathione group compared with the sedentary control group (25% and 53% higher, respectively). In the human study, the elevation of blood lactate was suppressed by glutathione intake (placebo, 3.4 ± 1.1 mM; glutathione, 2.9 ± 0.6 mM). Fatigue-related psychological factors were significantly decreased in the glutathione trial compared with the placebo trial.

Conclusions: These results suggest that glutathione supplementation improved lipid metabolism and acidification in skeletal muscles during exercise, leading to less muscle fatigue.

No MeSH data available.


Related in: MedlinePlus

The effect of glutathione on plasma ethanol-soluble (A) and protein-bound (B) glutathione level in humans. Values are provided as the mean ± SE. *p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4328900&req=5

Fig4: The effect of glutathione on plasma ethanol-soluble (A) and protein-bound (B) glutathione level in humans. Values are provided as the mean ± SE. *p < 0.05.

Mentions: There was a significant decrease in the blood glucose concentrations at 30 and 60 min after exercise compared with pre-exercise in both the placebo and glutathione trials (df = 41, F = 23.9, p < 0.01) (Figure 3A); however, there was no difference between the trials. There was a significant increase in blood lactate concentrations at 30 min after exercise compared with pre-exercise in the placebo trial (df = 41, F = 3.90, p < 0.05) but not in the glutathione trial (Figure 3B). The free form of glutathione in plasma was not changed by either exercise or glutathione intake. In contrast, protein-bound plasma glutathione was significantly reduced by exercise in the placebo trial (p < 0.05) although the reduction was moderated in the glutathione-supplemented group (Figure 4).Figure 3


Glutathione supplementation suppresses muscle fatigue induced by prolonged exercise via improved aerobic metabolism.

Aoi W, Ogaya Y, Takami M, Konishi T, Sauchi Y, Park EY, Wada S, Sato K, Higashi A - J Int Soc Sports Nutr (2015)

The effect of glutathione on plasma ethanol-soluble (A) and protein-bound (B) glutathione level in humans. Values are provided as the mean ± SE. *p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4328900&req=5

Fig4: The effect of glutathione on plasma ethanol-soluble (A) and protein-bound (B) glutathione level in humans. Values are provided as the mean ± SE. *p < 0.05.
Mentions: There was a significant decrease in the blood glucose concentrations at 30 and 60 min after exercise compared with pre-exercise in both the placebo and glutathione trials (df = 41, F = 23.9, p < 0.01) (Figure 3A); however, there was no difference between the trials. There was a significant increase in blood lactate concentrations at 30 min after exercise compared with pre-exercise in the placebo trial (df = 41, F = 3.90, p < 0.05) but not in the glutathione trial (Figure 3B). The free form of glutathione in plasma was not changed by either exercise or glutathione intake. In contrast, protein-bound plasma glutathione was significantly reduced by exercise in the placebo trial (p < 0.05) although the reduction was moderated in the glutathione-supplemented group (Figure 4).Figure 3

Bottom Line: After 2 weeks, the exercise groups ran on a treadmill at 25 m/min for 30 min.Immediately post-exercise, intermuscular pH was measured, and hind limb muscle and blood samples were collected to measure biochemical parameters.Then, they exercised on a cycle ergometer at 40% maximal heart rate for 60 min.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan.

ABSTRACT

Backgrounds: Glutathione is an endogenous redox couple in animal cells and plays important roles in antioxidant defense and detoxification, although it is unknown if oral glutathione supplementation affects exercise-induced physiological changes. The present study investigated the effect of glutathione intake on exercise-induced muscle metabolism and fatigue in mice and humans.

Methods: ICR mice were divided into 4 groups: sedentary control, sedentary supplemented with glutathione (2.0%, 5 μL/g body weight), exercise control, and exercise supplemented with glutathione. After 2 weeks, the exercise groups ran on a treadmill at 25 m/min for 30 min. Immediately post-exercise, intermuscular pH was measured, and hind limb muscle and blood samples were collected to measure biochemical parameters. In a double-blind, cross-over study, 8 healthy men (35.9 ± 2.0 y) were administered either glutathione (1 g/d) or placebo for 2 weeks. Then, they exercised on a cycle ergometer at 40% maximal heart rate for 60 min. Psychological state and blood biochemical parameters were examined after exercise.

Results: In the mouse experiment, post-exercise plasma non-esterified fatty acids were significantly lower in the exercise supplemented with glutathione group (820 ± 44 mEq/L) compared with the exercise control group (1152 ± 61 mEq/L). Intermuscular pH decreased with exercise (7.17 ± 0.01); however, this reduction was prevented by glutathione supplementation (7.23 ± 0.02). The peroxisome proliferator-activated receptor-γ coactivator-1α protein and mitochondrial DNA levels were significantly higher in the sedentary supplemented with glutathione group compared with the sedentary control group (25% and 53% higher, respectively). In the human study, the elevation of blood lactate was suppressed by glutathione intake (placebo, 3.4 ± 1.1 mM; glutathione, 2.9 ± 0.6 mM). Fatigue-related psychological factors were significantly decreased in the glutathione trial compared with the placebo trial.

Conclusions: These results suggest that glutathione supplementation improved lipid metabolism and acidification in skeletal muscles during exercise, leading to less muscle fatigue.

No MeSH data available.


Related in: MedlinePlus