Limits...
High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium.

Li JY, Wang XJ, Wang LN, Ying XX, Ren X, Liu HY, Xu L, Ma GW - Biomed Res Int (2015)

Bottom Line: The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum.Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria.These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

View Article: PubMed Central - PubMed

Affiliation: Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.

ABSTRACT
In order to investigate the potential of short antimicrobial peptides (AMPs) as alternative antibacterial agents during the treatment of peri-implantitis, the cytotoxic activity of three short AMPs, that is, Pac-525, KSL-W, and KSL, was determined using the MTT assay. The antimicrobial activity of these AMPs, ranging in concentration from 0.0039 mg/mL to 0.5 mg/mL, against the predominant planktonic pathogens, including Streptococcus sanguis, Fusobacterium nucleatum, and Porphyromonas gingivalis, involved in peri-implantitis was investigated. Furthermore, 2-day-old P. gingivalis biofilms cultured on titanium surfaces were treated with Pac-525 and subsequently observed and analysed using confocal laser scanning microscopy (CLSM). The average cell proliferation curve indicated that there was no cytotoxicity due to the three short AMPs. The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum. Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria. These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

Show MeSH
Physical morphology of titanium. (a) SEM image; (b) AF image.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4325973&req=5

fig1: Physical morphology of titanium. (a) SEM image; (b) AF image.

Mentions: Commercially pure titanium discs (10 mm in diameter and 1 mm in thickness) were polished using waterproof silicon carbide paper until 2,400 c, and morphological images were captured using a Scanning Electron Microscope (SEM, QUANTA 450; SA) and an Atomic Force Microscope (AF, Nanoscope IIIA+; Veeco, USA) and shown in Figure 1. The titanium surface had a smooth and uniform physical structure with a roughness of 0.027 μm, which corresponds to the features of the smooth neck of the clinical dental implants [18]. To form an acquired salivary pellicle on titanium and to prepare for bacteria culture, we coated the discs with 300 μL of unstimulated human saliva at 37°C for 4 h, washed them twice with PBS, and transferred them into 24-well plates. P. gingivalis biofilms were developed using a modified version of the method described by Noiri et al. [19]. Briefly, 2 mL BHIS with 1 × 106 CFU/mL bacterial suspension of P. gingivalis was cultured on the surface of titanium discs and aerobically incubated at 37°C for 48 h. To observe the formation and morphology of P. gingivalis cells on the titanium surface, the titanium discs were gently rinsed twice with PBS, fixed with 2.5% glutaraldehyde in 0.1 M cacodylic acid buffer overnight, sequentially dehydrated in a series of ethanol (20%, 50%, 70%, 90%, and 100%) for 10 min each, immersed in isoamyl acetate for 1.5 min, sputter-coated with a thin layer of Au-Pd, and observed and imaged using SEM.


High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium.

Li JY, Wang XJ, Wang LN, Ying XX, Ren X, Liu HY, Xu L, Ma GW - Biomed Res Int (2015)

Physical morphology of titanium. (a) SEM image; (b) AF image.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4325973&req=5

fig1: Physical morphology of titanium. (a) SEM image; (b) AF image.
Mentions: Commercially pure titanium discs (10 mm in diameter and 1 mm in thickness) were polished using waterproof silicon carbide paper until 2,400 c, and morphological images were captured using a Scanning Electron Microscope (SEM, QUANTA 450; SA) and an Atomic Force Microscope (AF, Nanoscope IIIA+; Veeco, USA) and shown in Figure 1. The titanium surface had a smooth and uniform physical structure with a roughness of 0.027 μm, which corresponds to the features of the smooth neck of the clinical dental implants [18]. To form an acquired salivary pellicle on titanium and to prepare for bacteria culture, we coated the discs with 300 μL of unstimulated human saliva at 37°C for 4 h, washed them twice with PBS, and transferred them into 24-well plates. P. gingivalis biofilms were developed using a modified version of the method described by Noiri et al. [19]. Briefly, 2 mL BHIS with 1 × 106 CFU/mL bacterial suspension of P. gingivalis was cultured on the surface of titanium discs and aerobically incubated at 37°C for 48 h. To observe the formation and morphology of P. gingivalis cells on the titanium surface, the titanium discs were gently rinsed twice with PBS, fixed with 2.5% glutaraldehyde in 0.1 M cacodylic acid buffer overnight, sequentially dehydrated in a series of ethanol (20%, 50%, 70%, 90%, and 100%) for 10 min each, immersed in isoamyl acetate for 1.5 min, sputter-coated with a thin layer of Au-Pd, and observed and imaged using SEM.

Bottom Line: The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum.Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria.These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

View Article: PubMed Central - PubMed

Affiliation: Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.

ABSTRACT
In order to investigate the potential of short antimicrobial peptides (AMPs) as alternative antibacterial agents during the treatment of peri-implantitis, the cytotoxic activity of three short AMPs, that is, Pac-525, KSL-W, and KSL, was determined using the MTT assay. The antimicrobial activity of these AMPs, ranging in concentration from 0.0039 mg/mL to 0.5 mg/mL, against the predominant planktonic pathogens, including Streptococcus sanguis, Fusobacterium nucleatum, and Porphyromonas gingivalis, involved in peri-implantitis was investigated. Furthermore, 2-day-old P. gingivalis biofilms cultured on titanium surfaces were treated with Pac-525 and subsequently observed and analysed using confocal laser scanning microscopy (CLSM). The average cell proliferation curve indicated that there was no cytotoxicity due to the three short AMPs. The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum. Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria. These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

Show MeSH