Limits...
Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium.

Zheng A, Luo J, Meng K, Li J, Zhang S, Li K, Liu G, Cai H, Bryden WL, Yao B - BMC Genomics (2014)

Bottom Line: The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content.The validity of the proteomics results was further confirmed by qPCR.This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P, R, China. liuguohua@caas.cn.

ABSTRACT

Background: Supplementation of broiler chicken diets with probiotics may improve carcass characteristics and meat quality. However, the underlying molecular mechanism remains unclear. In the present study, 2D-DIGE-based proteomics was employed to investigate the proteome changes associated with improved carcass traits and meat quality of Arbor Acres broilers (Gallus gallus) fed the probiotic Enterococcus faecium.

Results: The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content. These meat quality changes were related to the altered abundance of 22 proteins in the pectoral muscle following E. faecium feeding. Of these, 17 proteins have central roles in regulating meat quality due to their biological interaction network. Altered cytoskeletal and chaperon protein expression also contribute to improved water holding capacity and colour of meat, which suggests that upregulation of chaperon proteins maintains cell integrity and prevents moisture loss by enhancing folding and recovery of the membrane and cytoskeletal proteins. The down-regulation of β-enolase and pyruvate kinase muscle isozymes suggests roles in increasing the pH of meat by decreasing the production of lactic acid. The validity of the proteomics results was further confirmed by qPCR.

Conclusions: This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

Show MeSH

Related in: MedlinePlus

2-D DIGE profile of the pectoral muscles of 42-day-old AA broilers fed dietaryE. faecium. Protein spots showing significant differences (1.5-fold, p < 0.05) were cut out and identified by LC-Chip-ESI-QTOF-MS. Protein spots of differential abundance with known identities are number-labeled in red and green for up-regulation and down-regulation, respectively. Protein spot number-labeled in black is not differential expression between control and treatment groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4325948&req=5

Fig3: 2-D DIGE profile of the pectoral muscles of 42-day-old AA broilers fed dietaryE. faecium. Protein spots showing significant differences (1.5-fold, p < 0.05) were cut out and identified by LC-Chip-ESI-QTOF-MS. Protein spots of differential abundance with known identities are number-labeled in red and green for up-regulation and down-regulation, respectively. Protein spot number-labeled in black is not differential expression between control and treatment groups.

Mentions: A total of 1631 protein spots were detected on 2-D DIGE gels of pectoral muscle. The molecular weights and pI values ranged from 10 to 100 kDa and 3.0 to 10.0, respectively (Figure 3). Abundant proteins, especially housekeeping protein β-actin were enriched in random sampling of spots on the gels very well. Moreover, the abundance of β-actin protein (spot 23) was not differentially expressed between control and treatment groups (p > 0.05, Figure 3, Table 2) indicating the reproducibility of the experiment is convincible. The most significant changes (1.5-fold, p < 0.05) between control and treatment groups were selected for protein identification by LC-Chip-ESI-QTOF-MS. Except for unidentified proteins due to weak spectra, 22 altered spots were identified (Table 2). These proteins were grouped into four categories based on biological functions: carbohydrate and energy metabolism (50%), cytoskeleton (41%), chaperone protein (4.5%) and transporter (4.5%) (Figure 4). Those related to carbohydrate and energy metabolism and cytoskeleton were predominant and accounted for approximately 90% of the differential abundance proteins identified.Figure 3


Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium.

Zheng A, Luo J, Meng K, Li J, Zhang S, Li K, Liu G, Cai H, Bryden WL, Yao B - BMC Genomics (2014)

2-D DIGE profile of the pectoral muscles of 42-day-old AA broilers fed dietaryE. faecium. Protein spots showing significant differences (1.5-fold, p < 0.05) were cut out and identified by LC-Chip-ESI-QTOF-MS. Protein spots of differential abundance with known identities are number-labeled in red and green for up-regulation and down-regulation, respectively. Protein spot number-labeled in black is not differential expression between control and treatment groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4325948&req=5

Fig3: 2-D DIGE profile of the pectoral muscles of 42-day-old AA broilers fed dietaryE. faecium. Protein spots showing significant differences (1.5-fold, p < 0.05) were cut out and identified by LC-Chip-ESI-QTOF-MS. Protein spots of differential abundance with known identities are number-labeled in red and green for up-regulation and down-regulation, respectively. Protein spot number-labeled in black is not differential expression between control and treatment groups.
Mentions: A total of 1631 protein spots were detected on 2-D DIGE gels of pectoral muscle. The molecular weights and pI values ranged from 10 to 100 kDa and 3.0 to 10.0, respectively (Figure 3). Abundant proteins, especially housekeeping protein β-actin were enriched in random sampling of spots on the gels very well. Moreover, the abundance of β-actin protein (spot 23) was not differentially expressed between control and treatment groups (p > 0.05, Figure 3, Table 2) indicating the reproducibility of the experiment is convincible. The most significant changes (1.5-fold, p < 0.05) between control and treatment groups were selected for protein identification by LC-Chip-ESI-QTOF-MS. Except for unidentified proteins due to weak spectra, 22 altered spots were identified (Table 2). These proteins were grouped into four categories based on biological functions: carbohydrate and energy metabolism (50%), cytoskeleton (41%), chaperone protein (4.5%) and transporter (4.5%) (Figure 4). Those related to carbohydrate and energy metabolism and cytoskeleton were predominant and accounted for approximately 90% of the differential abundance proteins identified.Figure 3

Bottom Line: The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content.The validity of the proteomics results was further confirmed by qPCR.This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P, R, China. liuguohua@caas.cn.

ABSTRACT

Background: Supplementation of broiler chicken diets with probiotics may improve carcass characteristics and meat quality. However, the underlying molecular mechanism remains unclear. In the present study, 2D-DIGE-based proteomics was employed to investigate the proteome changes associated with improved carcass traits and meat quality of Arbor Acres broilers (Gallus gallus) fed the probiotic Enterococcus faecium.

Results: The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content. These meat quality changes were related to the altered abundance of 22 proteins in the pectoral muscle following E. faecium feeding. Of these, 17 proteins have central roles in regulating meat quality due to their biological interaction network. Altered cytoskeletal and chaperon protein expression also contribute to improved water holding capacity and colour of meat, which suggests that upregulation of chaperon proteins maintains cell integrity and prevents moisture loss by enhancing folding and recovery of the membrane and cytoskeletal proteins. The down-regulation of β-enolase and pyruvate kinase muscle isozymes suggests roles in increasing the pH of meat by decreasing the production of lactic acid. The validity of the proteomics results was further confirmed by qPCR.

Conclusions: This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

Show MeSH
Related in: MedlinePlus