Limits...
The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.

Turcato AM, Godi M, Giordano A, Schieppati M, Nardone A - J Neuroeng Rehabil (2015)

Bottom Line: During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot.On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot.At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In.

View Article: PubMed Central - PubMed

Affiliation: Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS), Veruno, NO, Italy. turcato.anna@gmail.com.

ABSTRACT

Background: Turning involves complex reorientation of the body and is accompanied by asymmetric motion of the lower limbs. We investigated the distribution of the forces under the two feet, and its relation to the trajectory features and body medio-lateral displacement during curved walking.

Methods: Twenty-six healthy young participants walked under three different randomized conditions: in a straight line (LIN), in a circular clockwise path and in a circular counter-clockwise path. Both feet were instrumented with Pedar-X insoles. An accelerometer was fixed to the trunk to measure the medio-lateral inclination of the body. We analyzed walking speed, stance duration as a percent of gait cycle (%GC), the vertical component of the ground reaction force (vGRF) of both feet during the entire stance, and trunk inclination.

Results: Gait speed was faster during LIN than curved walking, but not affected by the direction of the curved trajectory. Trunk inclination was negligible during LIN, while the trunk was inclined toward the center of the path during curved trajectories. Stance duration of LIN foot and foot inside the curved trajectory (Foot-In) was longer than for foot outside the trajectory (Foot-Out). vGRF at heel strike was larger in LIN than in curved walking. At mid-stance, vGRF for both Foot-In and Foot-Out was higher than for LIN foot. At toe off, vGRF for both Foot-In and Foot-Out was lower than for LIN foot; in addition, Foot-In had lower vGRF than Foot-Out. During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot. On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot. At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In.

Conclusions: The lower gait speed during curved walking is shaped by the control of trunk inclination and the production of asymmetric loading of heel and metatarsal heads, hence by the different contribution of the feet in producing the body inclination towards the centre of the trajectory.

No MeSH data available.


Average (+ standard error, SE) of the vertical component of the ground reaction force (vGRF) normalized to body weight (% BW) measured during the linear trajectory (LIN) as the average of right and left foot values and during curved trajectory in the inner (Foot-In) and outer foot (Foot-Out). Values are obtained from the peak values of vGRF at heel strike (A) and toe off (C), and from the trough value at mid-stance (B). A. At Heel Strike, vGRF of both Foot-In and Foot-Out was lower than that of LIN foot. B. At Mid-Stance, both Foot-In and Foot-Out had greater vGRF values than LIN foot. C. At Toe Off, Foot-In had smaller vGRF values than LIN foot. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4325939&req=5

Fig2: Average (+ standard error, SE) of the vertical component of the ground reaction force (vGRF) normalized to body weight (% BW) measured during the linear trajectory (LIN) as the average of right and left foot values and during curved trajectory in the inner (Foot-In) and outer foot (Foot-Out). Values are obtained from the peak values of vGRF at heel strike (A) and toe off (C), and from the trough value at mid-stance (B). A. At Heel Strike, vGRF of both Foot-In and Foot-Out was lower than that of LIN foot. B. At Mid-Stance, both Foot-In and Foot-Out had greater vGRF values than LIN foot. C. At Toe Off, Foot-In had smaller vGRF values than LIN foot. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.

Mentions: At HS, vGRF was 129.6 %BW ± 2.7, 113.6% ± 2.5 and 119.6% ± 2.8 for LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 9.36; p < 0.0005) (Figure 2A). Post-hoc analysis showed that vGRF of both Foot-In and Foot-Out were lower than that of LIN foot (respectively, p < 0.0005 and p < 0.05). In turn, vGRF was slightly smaller (not significantly so) for Foot-In than Foot-Out (p = 0.25). At MS, vGRF was 62.8%BW ± 2.3, 86.4 ± 2.3 and 80.0 ± 3.1 in LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 32.0; p < 0.0005) (Figure 2B). Both Foot-In and Foot-Out had greater vGRF values than LIN foot (post-hoc, p < 0.0001). vGRF of Foot-In was marginally higher than that of Foot-Out (p = 0.07). At TO, vGRF was 136.5%BW ± 2.7, 121.3 ± 2.7 and 127.9 ± 2.8 in LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 7.70; p < 0.005) (Figure 2C). Post-hoc analysis showed that Foot-In had smaller vGRF values than LIN foot (p < 0.005). vGRF was marginally smaller in Foot-Out than LIN foot (p = 0.08).Figure 1


The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.

Turcato AM, Godi M, Giordano A, Schieppati M, Nardone A - J Neuroeng Rehabil (2015)

Average (+ standard error, SE) of the vertical component of the ground reaction force (vGRF) normalized to body weight (% BW) measured during the linear trajectory (LIN) as the average of right and left foot values and during curved trajectory in the inner (Foot-In) and outer foot (Foot-Out). Values are obtained from the peak values of vGRF at heel strike (A) and toe off (C), and from the trough value at mid-stance (B). A. At Heel Strike, vGRF of both Foot-In and Foot-Out was lower than that of LIN foot. B. At Mid-Stance, both Foot-In and Foot-Out had greater vGRF values than LIN foot. C. At Toe Off, Foot-In had smaller vGRF values than LIN foot. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4325939&req=5

Fig2: Average (+ standard error, SE) of the vertical component of the ground reaction force (vGRF) normalized to body weight (% BW) measured during the linear trajectory (LIN) as the average of right and left foot values and during curved trajectory in the inner (Foot-In) and outer foot (Foot-Out). Values are obtained from the peak values of vGRF at heel strike (A) and toe off (C), and from the trough value at mid-stance (B). A. At Heel Strike, vGRF of both Foot-In and Foot-Out was lower than that of LIN foot. B. At Mid-Stance, both Foot-In and Foot-Out had greater vGRF values than LIN foot. C. At Toe Off, Foot-In had smaller vGRF values than LIN foot. *, p < 0.05; **, p < 0.005; ***, p < 0.0005.
Mentions: At HS, vGRF was 129.6 %BW ± 2.7, 113.6% ± 2.5 and 119.6% ± 2.8 for LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 9.36; p < 0.0005) (Figure 2A). Post-hoc analysis showed that vGRF of both Foot-In and Foot-Out were lower than that of LIN foot (respectively, p < 0.0005 and p < 0.05). In turn, vGRF was slightly smaller (not significantly so) for Foot-In than Foot-Out (p = 0.25). At MS, vGRF was 62.8%BW ± 2.3, 86.4 ± 2.3 and 80.0 ± 3.1 in LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 32.0; p < 0.0005) (Figure 2B). Both Foot-In and Foot-Out had greater vGRF values than LIN foot (post-hoc, p < 0.0001). vGRF of Foot-In was marginally higher than that of Foot-Out (p = 0.07). At TO, vGRF was 136.5%BW ± 2.7, 121.3 ± 2.7 and 127.9 ± 2.8 in LIN foot, Foot-In and Foot-Out, respectively (F(2,76) = 7.70; p < 0.005) (Figure 2C). Post-hoc analysis showed that Foot-In had smaller vGRF values than LIN foot (p < 0.005). vGRF was marginally smaller in Foot-Out than LIN foot (p = 0.08).Figure 1

Bottom Line: During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot.On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot.At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In.

View Article: PubMed Central - PubMed

Affiliation: Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS), Veruno, NO, Italy. turcato.anna@gmail.com.

ABSTRACT

Background: Turning involves complex reorientation of the body and is accompanied by asymmetric motion of the lower limbs. We investigated the distribution of the forces under the two feet, and its relation to the trajectory features and body medio-lateral displacement during curved walking.

Methods: Twenty-six healthy young participants walked under three different randomized conditions: in a straight line (LIN), in a circular clockwise path and in a circular counter-clockwise path. Both feet were instrumented with Pedar-X insoles. An accelerometer was fixed to the trunk to measure the medio-lateral inclination of the body. We analyzed walking speed, stance duration as a percent of gait cycle (%GC), the vertical component of the ground reaction force (vGRF) of both feet during the entire stance, and trunk inclination.

Results: Gait speed was faster during LIN than curved walking, but not affected by the direction of the curved trajectory. Trunk inclination was negligible during LIN, while the trunk was inclined toward the center of the path during curved trajectories. Stance duration of LIN foot and foot inside the curved trajectory (Foot-In) was longer than for foot outside the trajectory (Foot-Out). vGRF at heel strike was larger in LIN than in curved walking. At mid-stance, vGRF for both Foot-In and Foot-Out was higher than for LIN foot. At toe off, vGRF for both Foot-In and Foot-Out was lower than for LIN foot; in addition, Foot-In had lower vGRF than Foot-Out. During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot. On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot. At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In.

Conclusions: The lower gait speed during curved walking is shaped by the control of trunk inclination and the production of asymmetric loading of heel and metatarsal heads, hence by the different contribution of the feet in producing the body inclination towards the centre of the trajectory.

No MeSH data available.