Limits...
Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish.

Herget U, Ryu S - Front Neuroanat (2015)

Bottom Line: To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)).Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity.Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

View Article: PubMed Central - PubMed

Affiliation: Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany ; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg Heidelberg, Germany.

ABSTRACT
The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

No MeSH data available.


Related in: MedlinePlus

Overview of coexpression profiles of cells expressing avp, oxt, crh, penka, penkb, nts, cck, vip, or sst1.1. Coexpression degrees indicate complete absence (−), rare occurrence (+), low coexpression (++), or high coexpression (+++). In many combinations, coexpression was variable, and the minimum and maximum degrees are indicated (min/max). Differences between the coexpression of one peptide in one cell type and vice versa are caused by differences in cell cluster sizes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4325906&req=5

Figure 6: Overview of coexpression profiles of cells expressing avp, oxt, crh, penka, penkb, nts, cck, vip, or sst1.1. Coexpression degrees indicate complete absence (−), rare occurrence (+), low coexpression (++), or high coexpression (+++). In many combinations, coexpression was variable, and the minimum and maximum degrees are indicated (min/max). Differences between the coexpression of one peptide in one cell type and vice versa are caused by differences in cell cluster sizes.

Mentions: Consistent coexpression in all animals analyzed was found for three peptide combinations. The combination of nts and sst1.1 showed consistent coexpression in few cells (Figures 5B–B”’, 5/5). High degree of coexpression was consistently found for the rostralmost clusters formed by cells producing penkb or cck (Figures 5C–C”’, 13/13 animals). Coexpression was also consistently high for the combination of avp and crh staining (Figures 5D–D”’, 19/19 animals). These results are summarized in Figure 6, in which we also indicate the range of coexpression observed (minimum and maximum degrees).


Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish.

Herget U, Ryu S - Front Neuroanat (2015)

Overview of coexpression profiles of cells expressing avp, oxt, crh, penka, penkb, nts, cck, vip, or sst1.1. Coexpression degrees indicate complete absence (−), rare occurrence (+), low coexpression (++), or high coexpression (+++). In many combinations, coexpression was variable, and the minimum and maximum degrees are indicated (min/max). Differences between the coexpression of one peptide in one cell type and vice versa are caused by differences in cell cluster sizes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4325906&req=5

Figure 6: Overview of coexpression profiles of cells expressing avp, oxt, crh, penka, penkb, nts, cck, vip, or sst1.1. Coexpression degrees indicate complete absence (−), rare occurrence (+), low coexpression (++), or high coexpression (+++). In many combinations, coexpression was variable, and the minimum and maximum degrees are indicated (min/max). Differences between the coexpression of one peptide in one cell type and vice versa are caused by differences in cell cluster sizes.
Mentions: Consistent coexpression in all animals analyzed was found for three peptide combinations. The combination of nts and sst1.1 showed consistent coexpression in few cells (Figures 5B–B”’, 5/5). High degree of coexpression was consistently found for the rostralmost clusters formed by cells producing penkb or cck (Figures 5C–C”’, 13/13 animals). Coexpression was also consistently high for the combination of avp and crh staining (Figures 5D–D”’, 19/19 animals). These results are summarized in Figure 6, in which we also indicate the range of coexpression observed (minimum and maximum degrees).

Bottom Line: To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)).Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity.Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

View Article: PubMed Central - PubMed

Affiliation: Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany ; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg Heidelberg, Germany.

ABSTRACT
The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

No MeSH data available.


Related in: MedlinePlus