Limits...
Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish.

Herget U, Ryu S - Front Neuroanat (2015)

Bottom Line: To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)).Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity.Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

View Article: PubMed Central - PubMed

Affiliation: Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany ; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg Heidelberg, Germany.

ABSTRACT
The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

No MeSH data available.


In some cell type staining combinations, occasional and low coexpression can be observed. (A) Cells expressing avp or nts only overlap in rare cases. (B) Cells expressing oxt or crh are usually separate, but occasially these peptides are coexpressed in a single cell. (C) Cells expressing penkb cells usually surround the penka-positive cluster, but in few animals, one cell shows coexpression. (D)penka-positive cells and sst1.1-positive cells are intermingled, and occasionally show low coexpression. (E)crh-positive cells are intermingled with penka-positive cells, but some rare occurences of coexpression were found. (F)crh can also be coexpressed with nts in rare cases. (G)cck-positive cells appear to faintly coexpress sst1.1 in few of the animals. (H) One isolated cell was sometimes found coexpressing vip and nts. (I) Cells expressing avp or penka are intermingled and usually these peptides are not coexpressed, but single coexpressing cells do occur. (J) Stainings for oxt and penka often show no coexpressing cells, but sometimes these peptides are coexpressed in few cells. Images show maximum intensity projections, insets show split channels of single confocal planes with coexpressing cells (arrowheads). Scale bar: 50 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4325906&req=5

Figure 3: In some cell type staining combinations, occasional and low coexpression can be observed. (A) Cells expressing avp or nts only overlap in rare cases. (B) Cells expressing oxt or crh are usually separate, but occasially these peptides are coexpressed in a single cell. (C) Cells expressing penkb cells usually surround the penka-positive cluster, but in few animals, one cell shows coexpression. (D)penka-positive cells and sst1.1-positive cells are intermingled, and occasionally show low coexpression. (E)crh-positive cells are intermingled with penka-positive cells, but some rare occurences of coexpression were found. (F)crh can also be coexpressed with nts in rare cases. (G)cck-positive cells appear to faintly coexpress sst1.1 in few of the animals. (H) One isolated cell was sometimes found coexpressing vip and nts. (I) Cells expressing avp or penka are intermingled and usually these peptides are not coexpressed, but single coexpressing cells do occur. (J) Stainings for oxt and penka often show no coexpressing cells, but sometimes these peptides are coexpressed in few cells. Images show maximum intensity projections, insets show split channels of single confocal planes with coexpressing cells (arrowheads). Scale bar: 50 μm.

Mentions: Occasionally, a single cell was found coexpressing two neuropeptides in a larva, although most of the animals analyzed did not show coexpression. We observed such rarely coexpressing single cells in 10/36 neuropeptide combinations. A single avp-positive cell was occasionally found within nts-positive cells (Figure 3A, 3/11 animals). Similarly, in rare cases, single cells showed coexpression of crh and oxt (Figure 3B, 3/17 animals). The clusters of cells producing penka or penkb were spatially separate, but in one animal, coexpression could be found in a single cell (Figure 3C, 1/16 animals). The intermingled clusters of cells expressing penka or sst1.1 also in rare cases showed one cell with coexpression (Figure 3D, 2/14 animals). The crh-positive cluster occupied the rostral half of the region covered by both the penka-positive and nts-positive clusters, and in rarely occuring cells, crh was coexpressed with penka (Figure 3E, 4/14 animals) or nts (Figure 3F, 1/6 animals). While the cck-positive cluster was rostral, occasional coexpression of sst1.1 was observed (Figure 3G, 3/7 animals). The vip-producing cluster was caudal and lateral, but a cell that was more rostromedial did in one case coexpress nts (Figure 3H, 1/9 animals). The central cluster of penka-positive cells was intermingled with the clusters of cells expressing avp or oxt, and occasionally single penka-positive cells coexpressed avp (Figure 3I, 4/21 animals) or oxt (Figure 3J, 4/33 animals).


Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish.

Herget U, Ryu S - Front Neuroanat (2015)

In some cell type staining combinations, occasional and low coexpression can be observed. (A) Cells expressing avp or nts only overlap in rare cases. (B) Cells expressing oxt or crh are usually separate, but occasially these peptides are coexpressed in a single cell. (C) Cells expressing penkb cells usually surround the penka-positive cluster, but in few animals, one cell shows coexpression. (D)penka-positive cells and sst1.1-positive cells are intermingled, and occasionally show low coexpression. (E)crh-positive cells are intermingled with penka-positive cells, but some rare occurences of coexpression were found. (F)crh can also be coexpressed with nts in rare cases. (G)cck-positive cells appear to faintly coexpress sst1.1 in few of the animals. (H) One isolated cell was sometimes found coexpressing vip and nts. (I) Cells expressing avp or penka are intermingled and usually these peptides are not coexpressed, but single coexpressing cells do occur. (J) Stainings for oxt and penka often show no coexpressing cells, but sometimes these peptides are coexpressed in few cells. Images show maximum intensity projections, insets show split channels of single confocal planes with coexpressing cells (arrowheads). Scale bar: 50 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4325906&req=5

Figure 3: In some cell type staining combinations, occasional and low coexpression can be observed. (A) Cells expressing avp or nts only overlap in rare cases. (B) Cells expressing oxt or crh are usually separate, but occasially these peptides are coexpressed in a single cell. (C) Cells expressing penkb cells usually surround the penka-positive cluster, but in few animals, one cell shows coexpression. (D)penka-positive cells and sst1.1-positive cells are intermingled, and occasionally show low coexpression. (E)crh-positive cells are intermingled with penka-positive cells, but some rare occurences of coexpression were found. (F)crh can also be coexpressed with nts in rare cases. (G)cck-positive cells appear to faintly coexpress sst1.1 in few of the animals. (H) One isolated cell was sometimes found coexpressing vip and nts. (I) Cells expressing avp or penka are intermingled and usually these peptides are not coexpressed, but single coexpressing cells do occur. (J) Stainings for oxt and penka often show no coexpressing cells, but sometimes these peptides are coexpressed in few cells. Images show maximum intensity projections, insets show split channels of single confocal planes with coexpressing cells (arrowheads). Scale bar: 50 μm.
Mentions: Occasionally, a single cell was found coexpressing two neuropeptides in a larva, although most of the animals analyzed did not show coexpression. We observed such rarely coexpressing single cells in 10/36 neuropeptide combinations. A single avp-positive cell was occasionally found within nts-positive cells (Figure 3A, 3/11 animals). Similarly, in rare cases, single cells showed coexpression of crh and oxt (Figure 3B, 3/17 animals). The clusters of cells producing penka or penkb were spatially separate, but in one animal, coexpression could be found in a single cell (Figure 3C, 1/16 animals). The intermingled clusters of cells expressing penka or sst1.1 also in rare cases showed one cell with coexpression (Figure 3D, 2/14 animals). The crh-positive cluster occupied the rostral half of the region covered by both the penka-positive and nts-positive clusters, and in rarely occuring cells, crh was coexpressed with penka (Figure 3E, 4/14 animals) or nts (Figure 3F, 1/6 animals). While the cck-positive cluster was rostral, occasional coexpression of sst1.1 was observed (Figure 3G, 3/7 animals). The vip-producing cluster was caudal and lateral, but a cell that was more rostromedial did in one case coexpress nts (Figure 3H, 1/9 animals). The central cluster of penka-positive cells was intermingled with the clusters of cells expressing avp or oxt, and occasionally single penka-positive cells coexpressed avp (Figure 3I, 4/21 animals) or oxt (Figure 3J, 4/33 animals).

Bottom Line: To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)).Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity.Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

View Article: PubMed Central - PubMed

Affiliation: Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany ; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg Heidelberg, Germany.

ABSTRACT
The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

No MeSH data available.