Limits...
Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.


ROI putamen: no group-specific differences during training events (run 1).(A) Main effect of juice delivery (Controls > Meditators) averaged across run 1 display no differential activity in a whole brain analysis at p < 0.001, uncorrected. (B) ROI in left and right putamen. Beta estimates display significant activity in both groups, but non-differential reward activity across groups at the time of juice delivery during run 1 as displayed in (A). Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4325661&req=5

Figure 4: ROI putamen: no group-specific differences during training events (run 1).(A) Main effect of juice delivery (Controls > Meditators) averaged across run 1 display no differential activity in a whole brain analysis at p < 0.001, uncorrected. (B) ROI in left and right putamen. Beta estimates display significant activity in both groups, but non-differential reward activity across groups at the time of juice delivery during run 1 as displayed in (A). Error bars indicate SE.

Mentions: Next we tested if the differences in reward processing in the striatum was induced by the conditioning procedure or alternatively was task-independent and a pre-existing difference between the meditators and controls. We modeled the (unexpected) juice delivery time during run 1 in both groups. The contrast was computed at juice delivery 6 s after cue vs. baseline 5 s prior to cue (23 events). We found significant activity at the FDR-corrected level in bilateral putamen in both controls (Left: -24 4 12; z = 4.58. Right: 24 4 4; z = 4.45) and meditators (Left: -23 4 6; z = 4.58. Right: 28 0 4; z = 4.51). The beta estimates in the putamen did not differentiate between the two groups during unexpected juice delivery in run 1 (Figure 4B). In a direct comparison between the two groups at the time of (unexpected) juice delivery in run 1 we did not observe any differences between groups at p < 0.001, uncorrected (Figure 4A). These results demonstrate that mediators and controls exhibit non-differential striatal responses to unexpected juice delivery in run 1.


Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

ROI putamen: no group-specific differences during training events (run 1).(A) Main effect of juice delivery (Controls > Meditators) averaged across run 1 display no differential activity in a whole brain analysis at p < 0.001, uncorrected. (B) ROI in left and right putamen. Beta estimates display significant activity in both groups, but non-differential reward activity across groups at the time of juice delivery during run 1 as displayed in (A). Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4325661&req=5

Figure 4: ROI putamen: no group-specific differences during training events (run 1).(A) Main effect of juice delivery (Controls > Meditators) averaged across run 1 display no differential activity in a whole brain analysis at p < 0.001, uncorrected. (B) ROI in left and right putamen. Beta estimates display significant activity in both groups, but non-differential reward activity across groups at the time of juice delivery during run 1 as displayed in (A). Error bars indicate SE.
Mentions: Next we tested if the differences in reward processing in the striatum was induced by the conditioning procedure or alternatively was task-independent and a pre-existing difference between the meditators and controls. We modeled the (unexpected) juice delivery time during run 1 in both groups. The contrast was computed at juice delivery 6 s after cue vs. baseline 5 s prior to cue (23 events). We found significant activity at the FDR-corrected level in bilateral putamen in both controls (Left: -24 4 12; z = 4.58. Right: 24 4 4; z = 4.45) and meditators (Left: -23 4 6; z = 4.58. Right: 28 0 4; z = 4.51). The beta estimates in the putamen did not differentiate between the two groups during unexpected juice delivery in run 1 (Figure 4B). In a direct comparison between the two groups at the time of (unexpected) juice delivery in run 1 we did not observe any differences between groups at p < 0.001, uncorrected (Figure 4A). These results demonstrate that mediators and controls exhibit non-differential striatal responses to unexpected juice delivery in run 1.

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.