Limits...
Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.


Related in: MedlinePlus

Increased neural activity in right posterior insula to juice delivery in meditators.(A) Main effect of juice delivery collapsed across modality (normal/catch) in (Meditators > Controls) resulted in activity in the right insula (44 -12 20; z = 3.35; p < 0.001, unc.). (B) Parameter estimates extracted from the right posterior insula region are displayed for both groups and separated into trial types corresponding to averaged responses from run 3 and 4. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4325661&req=5

Figure 3: Increased neural activity in right posterior insula to juice delivery in meditators.(A) Main effect of juice delivery collapsed across modality (normal/catch) in (Meditators > Controls) resulted in activity in the right insula (44 -12 20; z = 3.35; p < 0.001, unc.). (B) Parameter estimates extracted from the right posterior insula region are displayed for both groups and separated into trial types corresponding to averaged responses from run 3 and 4. Error bars indicate SE.

Mentions: The reduced reliance on PEs in meditators expressed as reduced BOLD responses in the putamen, suggests a process whereby mindfulness meditation enables the brain to diminish the impact of PEs on behavior. If such a process is indeed at play in this group of meditators, there should also be a corresponding increase in brain regions that mediate the implementation of reduced PE signaling. To determine which brain regions may enable the effects of reduced PEs, we conducted an exploratory analysis to localize potential brain areas where activation to juice reward (independent of modality, i.e., normal or catch trials) was greater for meditators compared with controls. We focused on juice delivery independent of modality because our previous analyses did not identify differences between catch and normal juice delivery in meditators. We computed the main effect at juice delivery time in run 3 and run 4 (Meditators > Controls). This analysis revealed activity in the right posterior insula at p < 0.001, uncorrected (Figure 3A). Parameter estimates extracted from this region demonstrated that the meditator group showed elevated activity in the posterior insula compared to controls at juice delivery both during normal juice delivery and during catch juice trials in run 3 and 4 (Figure 3B).


Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

Increased neural activity in right posterior insula to juice delivery in meditators.(A) Main effect of juice delivery collapsed across modality (normal/catch) in (Meditators > Controls) resulted in activity in the right insula (44 -12 20; z = 3.35; p < 0.001, unc.). (B) Parameter estimates extracted from the right posterior insula region are displayed for both groups and separated into trial types corresponding to averaged responses from run 3 and 4. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4325661&req=5

Figure 3: Increased neural activity in right posterior insula to juice delivery in meditators.(A) Main effect of juice delivery collapsed across modality (normal/catch) in (Meditators > Controls) resulted in activity in the right insula (44 -12 20; z = 3.35; p < 0.001, unc.). (B) Parameter estimates extracted from the right posterior insula region are displayed for both groups and separated into trial types corresponding to averaged responses from run 3 and 4. Error bars indicate SE.
Mentions: The reduced reliance on PEs in meditators expressed as reduced BOLD responses in the putamen, suggests a process whereby mindfulness meditation enables the brain to diminish the impact of PEs on behavior. If such a process is indeed at play in this group of meditators, there should also be a corresponding increase in brain regions that mediate the implementation of reduced PE signaling. To determine which brain regions may enable the effects of reduced PEs, we conducted an exploratory analysis to localize potential brain areas where activation to juice reward (independent of modality, i.e., normal or catch trials) was greater for meditators compared with controls. We focused on juice delivery independent of modality because our previous analyses did not identify differences between catch and normal juice delivery in meditators. We computed the main effect at juice delivery time in run 3 and run 4 (Meditators > Controls). This analysis revealed activity in the right posterior insula at p < 0.001, uncorrected (Figure 3A). Parameter estimates extracted from this region demonstrated that the meditator group showed elevated activity in the posterior insula compared to controls at juice delivery both during normal juice delivery and during catch juice trials in run 3 and 4 (Figure 3B).

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.


Related in: MedlinePlus