Limits...
Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.


Related in: MedlinePlus

Negative PE signals.(A) Normal events consisted of a yellow light (1 s) and no juice delivery 10 s following the light cue. Catch events designed to capture a negative reward PE consisted of presentation of the light cue (1 s) and no juice delivery at the expected time at 6 s following the light cue. The specific contrast designed to capture the negative PE was: [Juice not delivered (expected) > Juice not delivered (unexpected)]. (B) Left panel, negative PEs for controls display activity in bilateral putamen. Right panel, negative PEs in meditators did not yield significant voxels (see Table 1 for complete list of activations). (C) Left panel, group differences to negative reward PEs show activity in left putamen in controls. Right panel, parameter estimates for the significant voxels in left putamen display a drop in the BOLD signal at times when juice was expected but not delivered. Controls are shown in blue and meditators in red. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4325661&req=5

Figure 2: Negative PE signals.(A) Normal events consisted of a yellow light (1 s) and no juice delivery 10 s following the light cue. Catch events designed to capture a negative reward PE consisted of presentation of the light cue (1 s) and no juice delivery at the expected time at 6 s following the light cue. The specific contrast designed to capture the negative PE was: [Juice not delivered (expected) > Juice not delivered (unexpected)]. (B) Left panel, negative PEs for controls display activity in bilateral putamen. Right panel, negative PEs in meditators did not yield significant voxels (see Table 1 for complete list of activations). (C) Left panel, group differences to negative reward PEs show activity in left putamen in controls. Right panel, parameter estimates for the significant voxels in left putamen display a drop in the BOLD signal at times when juice was expected but not delivered. Controls are shown in blue and meditators in red. Error bars indicate SE.

Mentions: In catch trials where juice was expected but not delivered compared to normal trials in which juice was not expected and not delivered [Juice not delivered (expected) > Juice not delivered (unexpected)](Figure 2A), we found significant activity, corresponding to a negative PE, in bilateral putamen (Right: 24 4 8; z = 3.54. Left: –24 4 4; z = 4.76) significant at p < 0.05 FDR-corrected (Figure 2B, left panel). No brain regions demonstrated significantly greater changes in brain responses during normal non-delivery minus catch events [Juice not delivered (unexpected) > Juice not delivered (expected)].


Mindfulness meditation modulates reward prediction errors in a passive conditioning task.

Kirk U, Montague PR - Front Psychol (2015)

Negative PE signals.(A) Normal events consisted of a yellow light (1 s) and no juice delivery 10 s following the light cue. Catch events designed to capture a negative reward PE consisted of presentation of the light cue (1 s) and no juice delivery at the expected time at 6 s following the light cue. The specific contrast designed to capture the negative PE was: [Juice not delivered (expected) > Juice not delivered (unexpected)]. (B) Left panel, negative PEs for controls display activity in bilateral putamen. Right panel, negative PEs in meditators did not yield significant voxels (see Table 1 for complete list of activations). (C) Left panel, group differences to negative reward PEs show activity in left putamen in controls. Right panel, parameter estimates for the significant voxels in left putamen display a drop in the BOLD signal at times when juice was expected but not delivered. Controls are shown in blue and meditators in red. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4325661&req=5

Figure 2: Negative PE signals.(A) Normal events consisted of a yellow light (1 s) and no juice delivery 10 s following the light cue. Catch events designed to capture a negative reward PE consisted of presentation of the light cue (1 s) and no juice delivery at the expected time at 6 s following the light cue. The specific contrast designed to capture the negative PE was: [Juice not delivered (expected) > Juice not delivered (unexpected)]. (B) Left panel, negative PEs for controls display activity in bilateral putamen. Right panel, negative PEs in meditators did not yield significant voxels (see Table 1 for complete list of activations). (C) Left panel, group differences to negative reward PEs show activity in left putamen in controls. Right panel, parameter estimates for the significant voxels in left putamen display a drop in the BOLD signal at times when juice was expected but not delivered. Controls are shown in blue and meditators in red. Error bars indicate SE.
Mentions: In catch trials where juice was expected but not delivered compared to normal trials in which juice was not expected and not delivered [Juice not delivered (expected) > Juice not delivered (unexpected)](Figure 2A), we found significant activity, corresponding to a negative PE, in bilateral putamen (Right: 24 4 8; z = 3.54. Left: –24 4 4; z = 4.76) significant at p < 0.05 FDR-corrected (Figure 2B, left panel). No brain regions demonstrated significantly greater changes in brain responses during normal non-delivery minus catch events [Juice not delivered (unexpected) > Juice not delivered (expected)].

Bottom Line: Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing.We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls.In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of Southern Denmark Odense, Denmark.

ABSTRACT
Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

No MeSH data available.


Related in: MedlinePlus