Limits...
Hemispheric differences in relational reasoning: novel insights based on an old technique.

Vendetti MS, Johnson EL, Lemos CJ, Bunge SA - Front Hum Neurosci (2015)

Bottom Line: Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition.To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain.We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.

View Article: PubMed Central - PubMed

Affiliation: Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA.

ABSTRACT
Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition. A bilateral brain network involving lateral prefrontal and parietal cortices has been consistently implicated in relational reasoning. Some data suggest a preferential role for the left hemisphere in this form of reasoning, whereas others suggest that the two hemispheres make important contributions. To test for a hemispheric asymmetry in relational reasoning, we made use of an old technique known as visual half-field stimulus presentation to manipulate whether stimuli were presented briefly to one hemisphere or the other. Across two experiments, 54 neurologically healthy young adults performed a visuospatial transitive inference task. Pairs of colored shapes were presented rapidly in either the left or right visual hemifield as participants maintained central fixation, thereby isolating initial encoding to the contralateral hemisphere. We observed a left-hemisphere advantage for encoding a series of ordered visuospatial relations, but both hemispheres contributed equally to task performance when the relations were presented out of order. To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain. We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.

No MeSH data available.


Related in: MedlinePlus

Accuracy as a function of ordering condition and number of times premise was presented in the left hemisphere (0, 1, 2, 3). For ordered trials, accuracy increased monotonically with the number of times a premise was presented in the left hemisphere. For reordered trials, a simple pattern was not observed; rather, accuracy decreased when premises were presented in the left hemisphere two times (i.e., on LRL and RLL trials) relative to one or three times. No effects were observed for response times.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4321644&req=5

Figure 3: Accuracy as a function of ordering condition and number of times premise was presented in the left hemisphere (0, 1, 2, 3). For ordered trials, accuracy increased monotonically with the number of times a premise was presented in the left hemisphere. For reordered trials, a simple pattern was not observed; rather, accuracy decreased when premises were presented in the left hemisphere two times (i.e., on LRL and RLL trials) relative to one or three times. No effects were observed for response times.

Mentions: In this section, we describe analyses investigating performance across both fully lateralized and mixed hemisphere trials (Figure 3). We ran 4 × 2 repeated measures ANOVAs with number of times in the left hemisphere (0, 1, 2, 3) and order (ordered versus reordered) as within-subject factors, predicting accuracy and response time scores in separate models.


Hemispheric differences in relational reasoning: novel insights based on an old technique.

Vendetti MS, Johnson EL, Lemos CJ, Bunge SA - Front Hum Neurosci (2015)

Accuracy as a function of ordering condition and number of times premise was presented in the left hemisphere (0, 1, 2, 3). For ordered trials, accuracy increased monotonically with the number of times a premise was presented in the left hemisphere. For reordered trials, a simple pattern was not observed; rather, accuracy decreased when premises were presented in the left hemisphere two times (i.e., on LRL and RLL trials) relative to one or three times. No effects were observed for response times.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4321644&req=5

Figure 3: Accuracy as a function of ordering condition and number of times premise was presented in the left hemisphere (0, 1, 2, 3). For ordered trials, accuracy increased monotonically with the number of times a premise was presented in the left hemisphere. For reordered trials, a simple pattern was not observed; rather, accuracy decreased when premises were presented in the left hemisphere two times (i.e., on LRL and RLL trials) relative to one or three times. No effects were observed for response times.
Mentions: In this section, we describe analyses investigating performance across both fully lateralized and mixed hemisphere trials (Figure 3). We ran 4 × 2 repeated measures ANOVAs with number of times in the left hemisphere (0, 1, 2, 3) and order (ordered versus reordered) as within-subject factors, predicting accuracy and response time scores in separate models.

Bottom Line: Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition.To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain.We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.

View Article: PubMed Central - PubMed

Affiliation: Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA.

ABSTRACT
Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition. A bilateral brain network involving lateral prefrontal and parietal cortices has been consistently implicated in relational reasoning. Some data suggest a preferential role for the left hemisphere in this form of reasoning, whereas others suggest that the two hemispheres make important contributions. To test for a hemispheric asymmetry in relational reasoning, we made use of an old technique known as visual half-field stimulus presentation to manipulate whether stimuli were presented briefly to one hemisphere or the other. Across two experiments, 54 neurologically healthy young adults performed a visuospatial transitive inference task. Pairs of colored shapes were presented rapidly in either the left or right visual hemifield as participants maintained central fixation, thereby isolating initial encoding to the contralateral hemisphere. We observed a left-hemisphere advantage for encoding a series of ordered visuospatial relations, but both hemispheres contributed equally to task performance when the relations were presented out of order. To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain. We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.

No MeSH data available.


Related in: MedlinePlus