Limits...
Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z - J. Exp. Bot. (2014)

Bottom Line: Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment.Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis.Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.

No MeSH data available.


Related in: MedlinePlus

The Biological Process GO terms enrichment of down-regulated (A) and up-regulated (B) genes between control and melatonin-pre-treated bermudagrass. The horizontal axis shows –log10 of the P-value. Twenty-one-day-old bermuagrass plants in pots were irrigated with water or 20 μM melatonin for 7 d, then the 28-day-old plants (with and without 7 d of pre-treatment) were used for transcriptomic analysis. (This figure is available in colour at JXB online.)
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4321537&req=5

Figure 7: The Biological Process GO terms enrichment of down-regulated (A) and up-regulated (B) genes between control and melatonin-pre-treated bermudagrass. The horizontal axis shows –log10 of the P-value. Twenty-one-day-old bermuagrass plants in pots were irrigated with water or 20 μM melatonin for 7 d, then the 28-day-old plants (with and without 7 d of pre-treatment) were used for transcriptomic analysis. (This figure is available in colour at JXB online.)

Mentions: Using fold change >2 and false discovery rate (FDR) <0.05 as thresholds, 3933 transcripts (2361 up-regulated and 1572 down-regulated by exogenous melatonin treatment) were identified as differentially expressed genes (Supplementary Tables S4, S5 at JXB online). Many stress-responsive genes were highly induced by exogenous melatonin treatment in bermudagrass (Table 1). Interestingly, several C-REPEAT-BINDING FACTORS/DEHYDRATION-responsive ELEMENT-BINDING PROTEIN (CBF/DREB) genes and target genes, heat shock transcription factors (TFs), zinc finger TFs, WRKY, MYB, bHLH genes, and hormone-related genes were highly induced >16-fold after melatonin treatment (Table 2). GO enrichment analysis in the biological process domain suggested that genes related to the cysteine biosynthetic process, response to light signal, and the photosynthetic process were down-regulated. In particular, the studies of Wang et al. (2012) showed that melatonin can lower ROS damage of many photosynthetic components. Therefore, the expression of genes involved in the photosystem might been suppressed through a negative feedback mechanism. The up-regulated genes were greatly enriched with the GO terms involved in gene expression regulatory process, such as protein phosphorylation, DNA-dependent transcription, regulation of circadian rhythm, etc. (Fig. 7).


Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z - J. Exp. Bot. (2014)

The Biological Process GO terms enrichment of down-regulated (A) and up-regulated (B) genes between control and melatonin-pre-treated bermudagrass. The horizontal axis shows –log10 of the P-value. Twenty-one-day-old bermuagrass plants in pots were irrigated with water or 20 μM melatonin for 7 d, then the 28-day-old plants (with and without 7 d of pre-treatment) were used for transcriptomic analysis. (This figure is available in colour at JXB online.)
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4321537&req=5

Figure 7: The Biological Process GO terms enrichment of down-regulated (A) and up-regulated (B) genes between control and melatonin-pre-treated bermudagrass. The horizontal axis shows –log10 of the P-value. Twenty-one-day-old bermuagrass plants in pots were irrigated with water or 20 μM melatonin for 7 d, then the 28-day-old plants (with and without 7 d of pre-treatment) were used for transcriptomic analysis. (This figure is available in colour at JXB online.)
Mentions: Using fold change >2 and false discovery rate (FDR) <0.05 as thresholds, 3933 transcripts (2361 up-regulated and 1572 down-regulated by exogenous melatonin treatment) were identified as differentially expressed genes (Supplementary Tables S4, S5 at JXB online). Many stress-responsive genes were highly induced by exogenous melatonin treatment in bermudagrass (Table 1). Interestingly, several C-REPEAT-BINDING FACTORS/DEHYDRATION-responsive ELEMENT-BINDING PROTEIN (CBF/DREB) genes and target genes, heat shock transcription factors (TFs), zinc finger TFs, WRKY, MYB, bHLH genes, and hormone-related genes were highly induced >16-fold after melatonin treatment (Table 2). GO enrichment analysis in the biological process domain suggested that genes related to the cysteine biosynthetic process, response to light signal, and the photosynthetic process were down-regulated. In particular, the studies of Wang et al. (2012) showed that melatonin can lower ROS damage of many photosynthetic components. Therefore, the expression of genes involved in the photosystem might been suppressed through a negative feedback mechanism. The up-regulated genes were greatly enriched with the GO terms involved in gene expression regulatory process, such as protein phosphorylation, DNA-dependent transcription, regulation of circadian rhythm, etc. (Fig. 7).

Bottom Line: Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment.Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis.Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.

No MeSH data available.


Related in: MedlinePlus