Limits...
Processing of unconventional stimuli requires the recruitment of the non-specialized hemisphere.

Kenett YN, Anaki D, Faust M - Front Hum Neurosci (2015)

Bottom Line: In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability.In Experiment 1, we studied two unconventional visual recognition tasks-Mooney face and objects' silhouette recognition-and found a significant relationship between measures of verbal creativity and unconventional face recognition.Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

View Article: PubMed Central - PubMed

Affiliation: The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel.

ABSTRACT
In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability. In Experiment 1, we studied two unconventional visual recognition tasks-Mooney face and objects' silhouette recognition-and found a significant relationship between measures of verbal creativity and unconventional face recognition. In Experiment 2 we used the split visual field (SVF) paradigm to investigate hemispheric processing of conventional and unconventional faces and its relation to verbal and visual characteristics of creativity. Results showed that while conventional faces were better processed by the specialized right hemisphere (RH), unconventional faces were better processed by the non-specialized left hemisphere (LH). In addition, only unconventional face processing by the non-specialized LH was related to verbal and visual measures of creative ability. Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

No MeSH data available.


Related in: MedlinePlus

Mean RT for the different tasks in the right and left visual fields. Natural Faces—Natural Faces sex recognition task; Mooney Faces—Mooney Faces sex recognition task; Silhouettes—silhouettes in/animate categorization task. LVF/RH—left visual field/right hemisphere; RVF/LH—right visual field/left hemisphere. *—p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4321434&req=5

Figure 3: Mean RT for the different tasks in the right and left visual fields. Natural Faces—Natural Faces sex recognition task; Mooney Faces—Mooney Faces sex recognition task; Silhouettes—silhouettes in/animate categorization task. LVF/RH—left visual field/right hemisphere; RVF/LH—right visual field/left hemisphere. *—p < 0.05.

Mentions: The behavioral analysis revealed a significant main effect for Task, F(2,107) = 21.338, p = 0.001, η2 = 0.266. This effect resulted from faster latency in the natural faces task compared to Mooney faces and silhouettes task (p’s < 0.001). No significant difference in RT was found between Mooney faces and silhouettes tasks. Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant main effect (power = 0.99). More importantly, a significant interaction was found between Task and Visual Field, F(2,107) = 5.114, p < 0.01, η2 = 0.08. This interaction stemmed from differences in the latency of the Mooney faces and natural faces tasks across the two visual fields: while natural faces were processed faster when presented to the left VF, t(118) = −1.97, p < 0.05, Mooney faces were processed faster when presented to the right VF, t(118) = 2.318, p < 0.02 (Table 2 and Figure 3). Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant interaction effect (power = 0.81). ANOVA analysis of the visual tasks accuracy data revealed a significant main effect of Task, F(2,96) = 321.904, p < 0.001, η2 = 0.845. Post hoc analyses indicated that this effect was due to a significant difference between the low accuracy of the Mooney faces task compared to the two other tasks (p’s < 0.01). No statistical difference was found between the accuracy rates of the natural faces and the silhouette tasks (Table 2). Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant main effect (power = 0.99).


Processing of unconventional stimuli requires the recruitment of the non-specialized hemisphere.

Kenett YN, Anaki D, Faust M - Front Hum Neurosci (2015)

Mean RT for the different tasks in the right and left visual fields. Natural Faces—Natural Faces sex recognition task; Mooney Faces—Mooney Faces sex recognition task; Silhouettes—silhouettes in/animate categorization task. LVF/RH—left visual field/right hemisphere; RVF/LH—right visual field/left hemisphere. *—p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4321434&req=5

Figure 3: Mean RT for the different tasks in the right and left visual fields. Natural Faces—Natural Faces sex recognition task; Mooney Faces—Mooney Faces sex recognition task; Silhouettes—silhouettes in/animate categorization task. LVF/RH—left visual field/right hemisphere; RVF/LH—right visual field/left hemisphere. *—p < 0.05.
Mentions: The behavioral analysis revealed a significant main effect for Task, F(2,107) = 21.338, p = 0.001, η2 = 0.266. This effect resulted from faster latency in the natural faces task compared to Mooney faces and silhouettes task (p’s < 0.001). No significant difference in RT was found between Mooney faces and silhouettes tasks. Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant main effect (power = 0.99). More importantly, a significant interaction was found between Task and Visual Field, F(2,107) = 5.114, p < 0.01, η2 = 0.08. This interaction stemmed from differences in the latency of the Mooney faces and natural faces tasks across the two visual fields: while natural faces were processed faster when presented to the left VF, t(118) = −1.97, p < 0.05, Mooney faces were processed faster when presented to the right VF, t(118) = 2.318, p < 0.02 (Table 2 and Figure 3). Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant interaction effect (power = 0.81). ANOVA analysis of the visual tasks accuracy data revealed a significant main effect of Task, F(2,96) = 321.904, p < 0.001, η2 = 0.845. Post hoc analyses indicated that this effect was due to a significant difference between the low accuracy of the Mooney faces task compared to the two other tasks (p’s < 0.01). No statistical difference was found between the accuracy rates of the natural faces and the silhouette tasks (Table 2). Power analysis indicated that with our sample size and effect size estimation, we had high power to detect a significant main effect (power = 0.99).

Bottom Line: In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability.In Experiment 1, we studied two unconventional visual recognition tasks-Mooney face and objects' silhouette recognition-and found a significant relationship between measures of verbal creativity and unconventional face recognition.Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

View Article: PubMed Central - PubMed

Affiliation: The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel.

ABSTRACT
In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability. In Experiment 1, we studied two unconventional visual recognition tasks-Mooney face and objects' silhouette recognition-and found a significant relationship between measures of verbal creativity and unconventional face recognition. In Experiment 2 we used the split visual field (SVF) paradigm to investigate hemispheric processing of conventional and unconventional faces and its relation to verbal and visual characteristics of creativity. Results showed that while conventional faces were better processed by the specialized right hemisphere (RH), unconventional faces were better processed by the non-specialized left hemisphere (LH). In addition, only unconventional face processing by the non-specialized LH was related to verbal and visual measures of creative ability. Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

No MeSH data available.


Related in: MedlinePlus