Limits...
A cohort study of the effectiveness of insecticide-treated bed nets to prevent malaria in an area of moderate pyrethroid resistance, Malawi.

Lindblade KA, Mwandama D, Mzilahowa T, Steinhardt L, Gimnig J, Shah M, Bauleni A, Wong J, Wiegand R, Howell P, Zoya J, Chiphwanya J, Mathanga DP - Malar. J. (2015)

Bottom Line: There were 1,909 infections with Plasmodium falciparum over 905 person-years at risk (PYAR), resulting in an observed incidence of 2.1 infections per person-year (iPPY).ITNs were used during 97% of the PYAR.There is an urgent need to identify or develop new insecticides and technologies to limit the vulnerability of ITNs to insecticide resistance.

View Article: PubMed Central - PubMed

Affiliation: Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, 1600 Clifton Rd. NE MS A-06, Atlanta, GA, 30333, USA. kil2@cdc.gov.

ABSTRACT

Background: Insecticide-treated bed nets (ITNs) are the cornerstone of malaria control in sub-Saharan Africa but their effectiveness may be compromised by the spread of pyrethroid resistance among malaria vectors. The objective of this investigation was to assess the effectiveness of ITNs to prevent malaria in an area of Malawi with moderate pyrethroid resistance.

Methods: One deltamethrin ITN was distributed in the study area for every two individuals in each household plus one extra ITN for households with an odd number of residents. A fixed cohort of 1,199 children aged six to 59 months was seen monthly for one year and at sick visits to measure malaria infection and use of ITNs. Insecticide resistance among malaria vectors was measured. The effect of ITN use on malaria incidence was assessed, adjusting for potential confounders using generalized estimating equations accounting for repeated measures.

Results: There were 1,909 infections with Plasmodium falciparum over 905 person-years at risk (PYAR), resulting in an observed incidence of 2.1 infections per person-year (iPPY). ITNs were used during 97% of the PYAR. The main vector was Anopheles funestus: mortality in WHO tube assays after exposure to 0.05% deltamethrin was 38% (95% confidence interval (CI) 29-47), and resistance was due to elevated oxidase enzymes. After adjusting for potential confounders, the incidence of malaria infection among ITN users was 1.7 iPPY (95% CI 1.5-2.1) and among non-bed net users was 2.6 iPPY (95% CI 2.0-3.3). Use of ITNs reduced the incidence of malaria infection by 30% (rate ratio 0.7; 95% CI, 0.5-0.8) compared to no bed nets.

Conclusion: ITNs significantly reduced the incidence of malaria infection in children in an area with moderate levels of pyrethroid resistance and considerable malaria transmission. This is the first study to show that ITNs provide protection in areas where pyrethroid-resistant An. funestus is the major malaria vector. Malaria control programmes should continue to distribute and promote ITNs in areas with low to moderate pyrethroid resistance; however, insecticide resistance may intensify further and it is not known whether ITNs will remain effective at higher levels of resistance. There is an urgent need to identify or develop new insecticides and technologies to limit the vulnerability of ITNs to insecticide resistance.

Show MeSH

Related in: MedlinePlus

Indoor resting density of malaria vectors in Liwonde, Malawi, 2012–2013. Error bars indicate the standard error of the mean, accounting for the sampling design.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4318190&req=5

Fig4: Indoor resting density of malaria vectors in Liwonde, Malawi, 2012–2013. Error bars indicate the standard error of the mean, accounting for the sampling design.

Mentions: There were 885 female anophelines collected through PSC; 743 (84%) were identified as An. funestus Giles and 142 (16%) as An. gambiae s.l. Mean indoor resting density for both species was highest in April 2012 and again between December 2012 and March 2013 (Figure 4). A total of 711 of the An. funestus and 114 of the An. gambiae s.l. collected by PSCs were tested for sporozoites and 30 (4%) and two (2%) were positive, respectively.Figure 4


A cohort study of the effectiveness of insecticide-treated bed nets to prevent malaria in an area of moderate pyrethroid resistance, Malawi.

Lindblade KA, Mwandama D, Mzilahowa T, Steinhardt L, Gimnig J, Shah M, Bauleni A, Wong J, Wiegand R, Howell P, Zoya J, Chiphwanya J, Mathanga DP - Malar. J. (2015)

Indoor resting density of malaria vectors in Liwonde, Malawi, 2012–2013. Error bars indicate the standard error of the mean, accounting for the sampling design.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4318190&req=5

Fig4: Indoor resting density of malaria vectors in Liwonde, Malawi, 2012–2013. Error bars indicate the standard error of the mean, accounting for the sampling design.
Mentions: There were 885 female anophelines collected through PSC; 743 (84%) were identified as An. funestus Giles and 142 (16%) as An. gambiae s.l. Mean indoor resting density for both species was highest in April 2012 and again between December 2012 and March 2013 (Figure 4). A total of 711 of the An. funestus and 114 of the An. gambiae s.l. collected by PSCs were tested for sporozoites and 30 (4%) and two (2%) were positive, respectively.Figure 4

Bottom Line: There were 1,909 infections with Plasmodium falciparum over 905 person-years at risk (PYAR), resulting in an observed incidence of 2.1 infections per person-year (iPPY).ITNs were used during 97% of the PYAR.There is an urgent need to identify or develop new insecticides and technologies to limit the vulnerability of ITNs to insecticide resistance.

View Article: PubMed Central - PubMed

Affiliation: Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, 1600 Clifton Rd. NE MS A-06, Atlanta, GA, 30333, USA. kil2@cdc.gov.

ABSTRACT

Background: Insecticide-treated bed nets (ITNs) are the cornerstone of malaria control in sub-Saharan Africa but their effectiveness may be compromised by the spread of pyrethroid resistance among malaria vectors. The objective of this investigation was to assess the effectiveness of ITNs to prevent malaria in an area of Malawi with moderate pyrethroid resistance.

Methods: One deltamethrin ITN was distributed in the study area for every two individuals in each household plus one extra ITN for households with an odd number of residents. A fixed cohort of 1,199 children aged six to 59 months was seen monthly for one year and at sick visits to measure malaria infection and use of ITNs. Insecticide resistance among malaria vectors was measured. The effect of ITN use on malaria incidence was assessed, adjusting for potential confounders using generalized estimating equations accounting for repeated measures.

Results: There were 1,909 infections with Plasmodium falciparum over 905 person-years at risk (PYAR), resulting in an observed incidence of 2.1 infections per person-year (iPPY). ITNs were used during 97% of the PYAR. The main vector was Anopheles funestus: mortality in WHO tube assays after exposure to 0.05% deltamethrin was 38% (95% confidence interval (CI) 29-47), and resistance was due to elevated oxidase enzymes. After adjusting for potential confounders, the incidence of malaria infection among ITN users was 1.7 iPPY (95% CI 1.5-2.1) and among non-bed net users was 2.6 iPPY (95% CI 2.0-3.3). Use of ITNs reduced the incidence of malaria infection by 30% (rate ratio 0.7; 95% CI, 0.5-0.8) compared to no bed nets.

Conclusion: ITNs significantly reduced the incidence of malaria infection in children in an area with moderate levels of pyrethroid resistance and considerable malaria transmission. This is the first study to show that ITNs provide protection in areas where pyrethroid-resistant An. funestus is the major malaria vector. Malaria control programmes should continue to distribute and promote ITNs in areas with low to moderate pyrethroid resistance; however, insecticide resistance may intensify further and it is not known whether ITNs will remain effective at higher levels of resistance. There is an urgent need to identify or develop new insecticides and technologies to limit the vulnerability of ITNs to insecticide resistance.

Show MeSH
Related in: MedlinePlus