Limits...
Diacetyloxyl derivatization of the fibroblast growth factor inhibitor dobesilate enhances its anti-inflammatory, anti-angiogenic and anti-tumoral activities.

Angulo J, Cuevas P, Cuevas B, El Youssef M, Fernández A, Martínez-Salamanca E, González-Corrochano R, Giménez-Gallego G - J Transl Med (2015)

Bottom Line: Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears.DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities.DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats.

View Article: PubMed Central - PubMed

Affiliation: Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain. javier.angulo@hrc.es.

ABSTRACT

Background: Dobesilate (2,5-dihydroxyphenyl sulfonate, DHPS) was recently identified as the most potent member of a family of fibroblast growth factor (FGF) inhibitors headed by gentisic acid, one of the main catabolites of aspirin. Although FGFs were first described as inducers of angiogenesis, they were soon recognized as broad spectrum mitogens. Furthermore, in the last decade these proteins have been shown to participate directly in the onset of inflammation, and their potential angiogenic activity often contributes to the inflammatory process in vivo. The aim of this work was to evaluate the anti-inflammatory, anti-angiogenic and anti-tumoral activities of the derivative of DHPS obtained by acetoxylation of its two hydroxyl groups (2,5-diacetoxyphenyl sulfonate; DAPS).

Methods: Anti-inflammatory, anti-angiogenic and anti-tumoral activities of DHPS and DAPS were compared using in vivo assays of dermatitis, angiogenesis and tumorigenesis. The effects of both compounds on myeloperoxidase (MPO) and cyclooxygenase (COX) activities, cytokine production and FGF-induced fibroblast proliferation were also determined.

Results: Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears. DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities. DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats. Furthermore, DAPS displays higher in vivo efficacy than DHPS in inhibiting FGF-induced angiogenesis and heterotopic glioma progression, with demonstrated oral efficacy to combat both processes.

Conclusions: By inhibiting both FGF-signaling and COX-mediated prostaglandin synthesis, DAPS efficiently breaks the vicious circle created by the reciprocal induction of FGF and prostaglandins, which probably sustains undesirable inflammation in many circumstances. Our findings define the enhancement of anti-inflammatory, anti-angiogenic and anti-tumoral activities by diacetyloxyl derivatization of the FGF inhibitor, dobesilate.

Show MeSH

Related in: MedlinePlus

Inhibition of FGF-1-induced mitogenesis in vitro and angiogenesisin vivoby potassium 2,5-dihydroxyphenyl sulfonate (DHPS) and potassium 2,5-diacetoxyphenyl sulfonate (DAPS). Panel A shows the inhibition of mitogenesis induced by fibroblast growth factor (FGF)-1 in quiescent Balb/c 3T3 fibroblasts treated with DHPS or DAPS. Representative microphotographs show how oral administration of the vehicle alone (VEH; tap water: B), DHPS (300 mg/kg/day; eq. to 1.32 mmol/kg/d; C) and DAPS (300 mg/kg/day; eq. to 0.96 mmol/kg/d; D) affect FGF-1-induced angiogenesis in gelatin sponges subcutaneously implanted in rats for 7 days. In the same assay, intense leukocyte extravasation and infiltration can be observed in sponges containing FGF-1 when they are removed from vehicle-treated rats (E) but not from DAPS-treated rats (F). The extent of neovascularization detected in phosphate buffered saline (PBS)- and FGF-1-containing sponges removed from rats treated with vehicle, DHPS or DAPS can be quantified (G). In a separate assay (H) the dose-response relationship of the effects of orally administered DAPS is shown (20 to 300 mg/kg/day; eq. to 0.06 to 0.96 mmol/kg/d), expressing the data as the mean ± SEM number of functional vessels per field, determined in 6 randomly acquired fields per specimen. The number of rats used for each measurement is indicated in parentheses: ***p < 0.001 vs. neovascularization in the absence of FGF-1; ††† p < 0.001 vs. FGF-1 + VEH; §§ p < 0.01 vs. FGF-1 + DHPS by one-factor ANOVA followed by Student-Newmann-Keuls test. Magnifications: B-D, x200; E-F, x400.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4318172&req=5

Fig5: Inhibition of FGF-1-induced mitogenesis in vitro and angiogenesisin vivoby potassium 2,5-dihydroxyphenyl sulfonate (DHPS) and potassium 2,5-diacetoxyphenyl sulfonate (DAPS). Panel A shows the inhibition of mitogenesis induced by fibroblast growth factor (FGF)-1 in quiescent Balb/c 3T3 fibroblasts treated with DHPS or DAPS. Representative microphotographs show how oral administration of the vehicle alone (VEH; tap water: B), DHPS (300 mg/kg/day; eq. to 1.32 mmol/kg/d; C) and DAPS (300 mg/kg/day; eq. to 0.96 mmol/kg/d; D) affect FGF-1-induced angiogenesis in gelatin sponges subcutaneously implanted in rats for 7 days. In the same assay, intense leukocyte extravasation and infiltration can be observed in sponges containing FGF-1 when they are removed from vehicle-treated rats (E) but not from DAPS-treated rats (F). The extent of neovascularization detected in phosphate buffered saline (PBS)- and FGF-1-containing sponges removed from rats treated with vehicle, DHPS or DAPS can be quantified (G). In a separate assay (H) the dose-response relationship of the effects of orally administered DAPS is shown (20 to 300 mg/kg/day; eq. to 0.06 to 0.96 mmol/kg/d), expressing the data as the mean ± SEM number of functional vessels per field, determined in 6 randomly acquired fields per specimen. The number of rats used for each measurement is indicated in parentheses: ***p < 0.001 vs. neovascularization in the absence of FGF-1; ††† p < 0.001 vs. FGF-1 + VEH; §§ p < 0.01 vs. FGF-1 + DHPS by one-factor ANOVA followed by Student-Newmann-Keuls test. Magnifications: B-D, x200; E-F, x400.

Mentions: DAPS inhibited FGF-induced proliferation of 3T3 fibroblasts in vitro (Figure 5A), although with a higher IC50 than DHPS. This result is not completely surprising, given the tight fit of the latter compound into a narrow pocket at the surface of FGF-1 [13]. However, DAPS is still a better FGF inhibitor than other compounds used as leads in the DHPS discovery process, which have been widely used to inhibit FGF-induced angiogenesis [34].Figure 5


Diacetyloxyl derivatization of the fibroblast growth factor inhibitor dobesilate enhances its anti-inflammatory, anti-angiogenic and anti-tumoral activities.

Angulo J, Cuevas P, Cuevas B, El Youssef M, Fernández A, Martínez-Salamanca E, González-Corrochano R, Giménez-Gallego G - J Transl Med (2015)

Inhibition of FGF-1-induced mitogenesis in vitro and angiogenesisin vivoby potassium 2,5-dihydroxyphenyl sulfonate (DHPS) and potassium 2,5-diacetoxyphenyl sulfonate (DAPS). Panel A shows the inhibition of mitogenesis induced by fibroblast growth factor (FGF)-1 in quiescent Balb/c 3T3 fibroblasts treated with DHPS or DAPS. Representative microphotographs show how oral administration of the vehicle alone (VEH; tap water: B), DHPS (300 mg/kg/day; eq. to 1.32 mmol/kg/d; C) and DAPS (300 mg/kg/day; eq. to 0.96 mmol/kg/d; D) affect FGF-1-induced angiogenesis in gelatin sponges subcutaneously implanted in rats for 7 days. In the same assay, intense leukocyte extravasation and infiltration can be observed in sponges containing FGF-1 when they are removed from vehicle-treated rats (E) but not from DAPS-treated rats (F). The extent of neovascularization detected in phosphate buffered saline (PBS)- and FGF-1-containing sponges removed from rats treated with vehicle, DHPS or DAPS can be quantified (G). In a separate assay (H) the dose-response relationship of the effects of orally administered DAPS is shown (20 to 300 mg/kg/day; eq. to 0.06 to 0.96 mmol/kg/d), expressing the data as the mean ± SEM number of functional vessels per field, determined in 6 randomly acquired fields per specimen. The number of rats used for each measurement is indicated in parentheses: ***p < 0.001 vs. neovascularization in the absence of FGF-1; ††† p < 0.001 vs. FGF-1 + VEH; §§ p < 0.01 vs. FGF-1 + DHPS by one-factor ANOVA followed by Student-Newmann-Keuls test. Magnifications: B-D, x200; E-F, x400.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4318172&req=5

Fig5: Inhibition of FGF-1-induced mitogenesis in vitro and angiogenesisin vivoby potassium 2,5-dihydroxyphenyl sulfonate (DHPS) and potassium 2,5-diacetoxyphenyl sulfonate (DAPS). Panel A shows the inhibition of mitogenesis induced by fibroblast growth factor (FGF)-1 in quiescent Balb/c 3T3 fibroblasts treated with DHPS or DAPS. Representative microphotographs show how oral administration of the vehicle alone (VEH; tap water: B), DHPS (300 mg/kg/day; eq. to 1.32 mmol/kg/d; C) and DAPS (300 mg/kg/day; eq. to 0.96 mmol/kg/d; D) affect FGF-1-induced angiogenesis in gelatin sponges subcutaneously implanted in rats for 7 days. In the same assay, intense leukocyte extravasation and infiltration can be observed in sponges containing FGF-1 when they are removed from vehicle-treated rats (E) but not from DAPS-treated rats (F). The extent of neovascularization detected in phosphate buffered saline (PBS)- and FGF-1-containing sponges removed from rats treated with vehicle, DHPS or DAPS can be quantified (G). In a separate assay (H) the dose-response relationship of the effects of orally administered DAPS is shown (20 to 300 mg/kg/day; eq. to 0.06 to 0.96 mmol/kg/d), expressing the data as the mean ± SEM number of functional vessels per field, determined in 6 randomly acquired fields per specimen. The number of rats used for each measurement is indicated in parentheses: ***p < 0.001 vs. neovascularization in the absence of FGF-1; ††† p < 0.001 vs. FGF-1 + VEH; §§ p < 0.01 vs. FGF-1 + DHPS by one-factor ANOVA followed by Student-Newmann-Keuls test. Magnifications: B-D, x200; E-F, x400.
Mentions: DAPS inhibited FGF-induced proliferation of 3T3 fibroblasts in vitro (Figure 5A), although with a higher IC50 than DHPS. This result is not completely surprising, given the tight fit of the latter compound into a narrow pocket at the surface of FGF-1 [13]. However, DAPS is still a better FGF inhibitor than other compounds used as leads in the DHPS discovery process, which have been widely used to inhibit FGF-induced angiogenesis [34].Figure 5

Bottom Line: Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears.DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities.DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats.

View Article: PubMed Central - PubMed

Affiliation: Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain. javier.angulo@hrc.es.

ABSTRACT

Background: Dobesilate (2,5-dihydroxyphenyl sulfonate, DHPS) was recently identified as the most potent member of a family of fibroblast growth factor (FGF) inhibitors headed by gentisic acid, one of the main catabolites of aspirin. Although FGFs were first described as inducers of angiogenesis, they were soon recognized as broad spectrum mitogens. Furthermore, in the last decade these proteins have been shown to participate directly in the onset of inflammation, and their potential angiogenic activity often contributes to the inflammatory process in vivo. The aim of this work was to evaluate the anti-inflammatory, anti-angiogenic and anti-tumoral activities of the derivative of DHPS obtained by acetoxylation of its two hydroxyl groups (2,5-diacetoxyphenyl sulfonate; DAPS).

Methods: Anti-inflammatory, anti-angiogenic and anti-tumoral activities of DHPS and DAPS were compared using in vivo assays of dermatitis, angiogenesis and tumorigenesis. The effects of both compounds on myeloperoxidase (MPO) and cyclooxygenase (COX) activities, cytokine production and FGF-induced fibroblast proliferation were also determined.

Results: Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears. DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities. DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats. Furthermore, DAPS displays higher in vivo efficacy than DHPS in inhibiting FGF-induced angiogenesis and heterotopic glioma progression, with demonstrated oral efficacy to combat both processes.

Conclusions: By inhibiting both FGF-signaling and COX-mediated prostaglandin synthesis, DAPS efficiently breaks the vicious circle created by the reciprocal induction of FGF and prostaglandins, which probably sustains undesirable inflammation in many circumstances. Our findings define the enhancement of anti-inflammatory, anti-angiogenic and anti-tumoral activities by diacetyloxyl derivatization of the FGF inhibitor, dobesilate.

Show MeSH
Related in: MedlinePlus