Limits...
Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage.

Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D'Alessandro S, Mantegazza R, Bernasconi P - Mol Brain (2015)

Bottom Line: Expression of miR-9, miR-124a, miR-19a and -19b was significantly increased in G93A-SOD1 whole brain at late stage disease compared to B6.SJL and Wt-SOD1 control brains.In G93A-SOD1 brainstem motor nuclei and primary motor cortex, miR-9 and miR-124a were significantly up-regulated, miR-125b expression was also increased. miR-19a and -19b were up-regulated in primary motor cortex and hippocampus, respectively.Expression analysis of predicted miRNA targets identified miRNA/target gene pairs differentially expressed in G93A-SOD1 brain regions compared to controls.

View Article: PubMed Central - PubMed

Affiliation: Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy. stefania.marcuzzo@istituto-besta.it.

ABSTRACT

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motor neuron degeneration in motor cortex, brainstem and spinal cord. microRNAs (miRNAs) are small non-coding RNAs that bind complementary target sequences and modulate gene expression; they are key molecules for establishing a neuronal phenotype, and in neurodegeneration. Here we investigated neural miR-9, miR-124a, miR-125b, miR-219, miR-134, and cell cycle-related miR-19a and -19b, in G93A-SOD1 mouse brain in pre-symptomatic and late stage disease.

Results: Expression of miR-9, miR-124a, miR-19a and -19b was significantly increased in G93A-SOD1 whole brain at late stage disease compared to B6.SJL and Wt-SOD1 control brains. These miRNAs were then analyzed in manually dissected SVZ, hippocampus, primary motor cortex and brainstem motor nuclei in 18-week-old ALS mice compared to same age controls. In SVZ and hippocampus miR-124a was up-regulated, miR-219 was down-regulated, and numbers of neural stem progenitor cells (NSPCs) were significantly increased. In G93A-SOD1 brainstem motor nuclei and primary motor cortex, miR-9 and miR-124a were significantly up-regulated, miR-125b expression was also increased. miR-19a and -19b were up-regulated in primary motor cortex and hippocampus, respectively. Expression analysis of predicted miRNA targets identified miRNA/target gene pairs differentially expressed in G93A-SOD1 brain regions compared to controls.

Conclusions: Hierarchical clustering analysis, identifying two clusters of miRNA/target genes, one characterizing brainstem motor nuclei and primary motor cortex, the other hippocampus and SVZ, suggests that altered expression of neural and cell cycle-related miRNAs in these brain regions might contribute to ALS pathogenesis in G93A-SOD1 mice. Re-establishing their expression to normal levels could be a new therapeutic approach to ALS.

Show MeSH

Related in: MedlinePlus

Altered expression of predicted miRNA targets in distinct regions of G93A-SOD1 mouse brain. Data are presented as means ± SD of log2 of fold changes of 2-ΔCT expression in G93A-SOD1 relative to Wt-SOD1 (grey bars) at late stage disease (week 18). Significant changes in mRNA (*p < 0.05, **p < 0.01, grey bars) and miRNA (*p < 0.05, **p < 0.01, light grey bars) expression relative to control are indicated. Limma moderated t-test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4318136&req=5

Fig3: Altered expression of predicted miRNA targets in distinct regions of G93A-SOD1 mouse brain. Data are presented as means ± SD of log2 of fold changes of 2-ΔCT expression in G93A-SOD1 relative to Wt-SOD1 (grey bars) at late stage disease (week 18). Significant changes in mRNA (*p < 0.05, **p < 0.01, grey bars) and miRNA (*p < 0.05, **p < 0.01, light grey bars) expression relative to control are indicated. Limma moderated t-test.

Mentions: Based on miRWalk database prediction [32] and on the literature [28,30,33-37], the following miRNA target mRNAs were identified: cyclin D2 (Ccnd2), Dlx2, forkhead box protein J3 (FoxJ3), hairy and enhancer of split 1 (Hes1), Jagged 1 (Jag1), MAP kinase interacting serine/threonine kinase 2 (Mknk2), nuclear receptor subfamily 2 (Nr2e1), phosphatase and tensin homolog (Pten), specific E3 ubiquitin protein ligase 1 (Smurf1), suppressor of cytokine signaling 1 (Socs1), sex determining region Y(SRY)-box 6 (Sox6), Sox9 and signal transducer and activator of transcription 3 (STAT3). Their expression levels were quantified in 18-week-old ALS and control brain. Jag1, Nr2e1, and Smurf1 mRNA levels did not differ significantly between ALS and controls in any brain area (data not shown). In SVZ, all other mRNAs, except Socs1, were significantly more expressed in ALS than control brain (p < 0.05 and p < 0.01, Figure 3). In hippocampus, primary motor cortex and brainstem motor nuclei, the mRNAs of most putative target genes were non-significantly reduced in ALS compared to control; exceptions were a significant increase of Dlx2 in hippocampus, and a significant decrease of Socs1 in primary motor cortex and brainstem motor nuclei (p < 0.05, Figure 3).Figure 3


Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage.

Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D'Alessandro S, Mantegazza R, Bernasconi P - Mol Brain (2015)

Altered expression of predicted miRNA targets in distinct regions of G93A-SOD1 mouse brain. Data are presented as means ± SD of log2 of fold changes of 2-ΔCT expression in G93A-SOD1 relative to Wt-SOD1 (grey bars) at late stage disease (week 18). Significant changes in mRNA (*p < 0.05, **p < 0.01, grey bars) and miRNA (*p < 0.05, **p < 0.01, light grey bars) expression relative to control are indicated. Limma moderated t-test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4318136&req=5

Fig3: Altered expression of predicted miRNA targets in distinct regions of G93A-SOD1 mouse brain. Data are presented as means ± SD of log2 of fold changes of 2-ΔCT expression in G93A-SOD1 relative to Wt-SOD1 (grey bars) at late stage disease (week 18). Significant changes in mRNA (*p < 0.05, **p < 0.01, grey bars) and miRNA (*p < 0.05, **p < 0.01, light grey bars) expression relative to control are indicated. Limma moderated t-test.
Mentions: Based on miRWalk database prediction [32] and on the literature [28,30,33-37], the following miRNA target mRNAs were identified: cyclin D2 (Ccnd2), Dlx2, forkhead box protein J3 (FoxJ3), hairy and enhancer of split 1 (Hes1), Jagged 1 (Jag1), MAP kinase interacting serine/threonine kinase 2 (Mknk2), nuclear receptor subfamily 2 (Nr2e1), phosphatase and tensin homolog (Pten), specific E3 ubiquitin protein ligase 1 (Smurf1), suppressor of cytokine signaling 1 (Socs1), sex determining region Y(SRY)-box 6 (Sox6), Sox9 and signal transducer and activator of transcription 3 (STAT3). Their expression levels were quantified in 18-week-old ALS and control brain. Jag1, Nr2e1, and Smurf1 mRNA levels did not differ significantly between ALS and controls in any brain area (data not shown). In SVZ, all other mRNAs, except Socs1, were significantly more expressed in ALS than control brain (p < 0.05 and p < 0.01, Figure 3). In hippocampus, primary motor cortex and brainstem motor nuclei, the mRNAs of most putative target genes were non-significantly reduced in ALS compared to control; exceptions were a significant increase of Dlx2 in hippocampus, and a significant decrease of Socs1 in primary motor cortex and brainstem motor nuclei (p < 0.05, Figure 3).Figure 3

Bottom Line: Expression of miR-9, miR-124a, miR-19a and -19b was significantly increased in G93A-SOD1 whole brain at late stage disease compared to B6.SJL and Wt-SOD1 control brains.In G93A-SOD1 brainstem motor nuclei and primary motor cortex, miR-9 and miR-124a were significantly up-regulated, miR-125b expression was also increased. miR-19a and -19b were up-regulated in primary motor cortex and hippocampus, respectively.Expression analysis of predicted miRNA targets identified miRNA/target gene pairs differentially expressed in G93A-SOD1 brain regions compared to controls.

View Article: PubMed Central - PubMed

Affiliation: Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione Istituto Neurologico "Carlo Besta", Via Celoria 11, Milan, 20133, Italy. stefania.marcuzzo@istituto-besta.it.

ABSTRACT

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motor neuron degeneration in motor cortex, brainstem and spinal cord. microRNAs (miRNAs) are small non-coding RNAs that bind complementary target sequences and modulate gene expression; they are key molecules for establishing a neuronal phenotype, and in neurodegeneration. Here we investigated neural miR-9, miR-124a, miR-125b, miR-219, miR-134, and cell cycle-related miR-19a and -19b, in G93A-SOD1 mouse brain in pre-symptomatic and late stage disease.

Results: Expression of miR-9, miR-124a, miR-19a and -19b was significantly increased in G93A-SOD1 whole brain at late stage disease compared to B6.SJL and Wt-SOD1 control brains. These miRNAs were then analyzed in manually dissected SVZ, hippocampus, primary motor cortex and brainstem motor nuclei in 18-week-old ALS mice compared to same age controls. In SVZ and hippocampus miR-124a was up-regulated, miR-219 was down-regulated, and numbers of neural stem progenitor cells (NSPCs) were significantly increased. In G93A-SOD1 brainstem motor nuclei and primary motor cortex, miR-9 and miR-124a were significantly up-regulated, miR-125b expression was also increased. miR-19a and -19b were up-regulated in primary motor cortex and hippocampus, respectively. Expression analysis of predicted miRNA targets identified miRNA/target gene pairs differentially expressed in G93A-SOD1 brain regions compared to controls.

Conclusions: Hierarchical clustering analysis, identifying two clusters of miRNA/target genes, one characterizing brainstem motor nuclei and primary motor cortex, the other hippocampus and SVZ, suggests that altered expression of neural and cell cycle-related miRNAs in these brain regions might contribute to ALS pathogenesis in G93A-SOD1 mice. Re-establishing their expression to normal levels could be a new therapeutic approach to ALS.

Show MeSH
Related in: MedlinePlus