Limits...
A tissue retrieval and postharvest processing regimen for rodent reproductive tissues compatible with long-term storage on the international space station and postflight biospecimen sharing program.

Gupta V, Holets-Bondar L, Roby KF, Enders G, Tash JS - Biomed Res Int (2015)

Bottom Line: Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging.Postfixation processing was also standardized for safe shipment back to our laboratory.Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Mail Stop 3050, 3901 Rainbow Boulevard, HLSIC 3098, Kansas City, KS 66160, USA.

ABSTRACT
Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at -80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.

Show MeSH

Related in: MedlinePlus

Gerbil testicular morphology (40x objective) at various time points after tissue harvest from the carcass (magnification bar is 50 μm). All gerbils were euthanized at once and tissues were harvested from the carcass at 0.5 hr interval from 0 to 2.5 hr. HE staining demonstrated the retention of histological features at every time point.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4309301&req=5

fig2: Gerbil testicular morphology (40x objective) at various time points after tissue harvest from the carcass (magnification bar is 50 μm). All gerbils were euthanized at once and tissues were harvested from the carcass at 0.5 hr interval from 0 to 2.5 hr. HE staining demonstrated the retention of histological features at every time point.

Mentions: Testis showed normal distinct histological details with all spermatogenic cells arranged in a normal pattern in the tubule when collected up to 2.5 hr after euthanasia (Figure 2). Total motility of the gerbil cauda epididymal sperm harvested at each at time point was analyzed and is presented in Table 3. Since the data represent a single animal, statistical analysis cannot be done. Given the variation in motility with time, the data suggest that motility was relatively stable at all time points, except with perhaps a drop at 2.5 hr.


A tissue retrieval and postharvest processing regimen for rodent reproductive tissues compatible with long-term storage on the international space station and postflight biospecimen sharing program.

Gupta V, Holets-Bondar L, Roby KF, Enders G, Tash JS - Biomed Res Int (2015)

Gerbil testicular morphology (40x objective) at various time points after tissue harvest from the carcass (magnification bar is 50 μm). All gerbils were euthanized at once and tissues were harvested from the carcass at 0.5 hr interval from 0 to 2.5 hr. HE staining demonstrated the retention of histological features at every time point.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4309301&req=5

fig2: Gerbil testicular morphology (40x objective) at various time points after tissue harvest from the carcass (magnification bar is 50 μm). All gerbils were euthanized at once and tissues were harvested from the carcass at 0.5 hr interval from 0 to 2.5 hr. HE staining demonstrated the retention of histological features at every time point.
Mentions: Testis showed normal distinct histological details with all spermatogenic cells arranged in a normal pattern in the tubule when collected up to 2.5 hr after euthanasia (Figure 2). Total motility of the gerbil cauda epididymal sperm harvested at each at time point was analyzed and is presented in Table 3. Since the data represent a single animal, statistical analysis cannot be done. Given the variation in motility with time, the data suggest that motility was relatively stable at all time points, except with perhaps a drop at 2.5 hr.

Bottom Line: Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging.Postfixation processing was also standardized for safe shipment back to our laboratory.Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Mail Stop 3050, 3901 Rainbow Boulevard, HLSIC 3098, Kansas City, KS 66160, USA.

ABSTRACT
Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at -80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.

Show MeSH
Related in: MedlinePlus