Limits...
Proteinquakes in the evolution of influenza virus hemagglutinin (A/H1N1) under opposing migration and vaccination pressures.

Phillips JC - Biomed Res Int (2015)

Bottom Line: Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA.HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions.Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.

ABSTRACT
Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

Show MeSH

Related in: MedlinePlus

The HA1 swine flu sequences profiled here are England 1998, Hong Kong 1999, North Carolina 2000 and 2003, and Kansas 2007.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4309245&req=5

fig9: The HA1 swine flu sequences profiled here are England 1998, Hong Kong 1999, North Carolina 2000 and 2003, and Kansas 2007.

Mentions: As shown in Figure 9, a new superstrain of swine flu first appeared in Hong Kong in 1999. The England 1998 strain was very different, being much more hydrophobic in the post-230 block and much more hydrophilic in the silaic acid block 130–230 (presumably less antigenic). Hong Kong 1999 swine flu quickly spread to North Carolina 2000, but by 2003 its increased 130–230 antigenicity had been halved, and the increase in the sub-130 block had nearly disappeared. Thus the new flu strain appeared in swine several years before its first human appearance in New York in 2003 and had been controlled by vaccination in swine before the new strain had become a human problem, which probably limited its human impact.


Proteinquakes in the evolution of influenza virus hemagglutinin (A/H1N1) under opposing migration and vaccination pressures.

Phillips JC - Biomed Res Int (2015)

The HA1 swine flu sequences profiled here are England 1998, Hong Kong 1999, North Carolina 2000 and 2003, and Kansas 2007.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4309245&req=5

fig9: The HA1 swine flu sequences profiled here are England 1998, Hong Kong 1999, North Carolina 2000 and 2003, and Kansas 2007.
Mentions: As shown in Figure 9, a new superstrain of swine flu first appeared in Hong Kong in 1999. The England 1998 strain was very different, being much more hydrophobic in the post-230 block and much more hydrophilic in the silaic acid block 130–230 (presumably less antigenic). Hong Kong 1999 swine flu quickly spread to North Carolina 2000, but by 2003 its increased 130–230 antigenicity had been halved, and the increase in the sub-130 block had nearly disappeared. Thus the new flu strain appeared in swine several years before its first human appearance in New York in 2003 and had been controlled by vaccination in swine before the new strain had become a human problem, which probably limited its human impact.

Bottom Line: Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA.HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions.Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.

ABSTRACT
Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

Show MeSH
Related in: MedlinePlus