Limits...
Proteinquakes in the evolution of influenza virus hemagglutinin (A/H1N1) under opposing migration and vaccination pressures.

Phillips JC - Biomed Res Int (2015)

Bottom Line: Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA.HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions.Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.

ABSTRACT
Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

Show MeSH

Related in: MedlinePlus

Comparison of human strains from New York 2000 and 2003 with swine flu from Kansas 2007. The similarities are obvious, but what actually happened is described in Figures 9 and 10.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4309245&req=5

fig8: Comparison of human strains from New York 2000 and 2003 with swine flu from Kansas 2007. The similarities are obvious, but what actually happened is described in Figures 9 and 10.

Mentions: The 1989–2003 NA smoothing gain ended with the advent of the “swine flu” strains, which appeared in successive outbreaks, first in Hong Kong 1999 and next in New York in 2003 and in Berlin in 2005. The characteristic HA feature of these strains was a large hydrophobic increase in the N terminal sub-130 block, which was almost identical for New York and Berlin (Figure 7). These hydrophobic block increases correspond to block compressive elastic stiffening. As shown in Figure 8, comparison with an actual 2007 swine flu sequence shows that the latter sequences were also evolving rapidly. How did flu evolution in swine compare with human flu evolution?


Proteinquakes in the evolution of influenza virus hemagglutinin (A/H1N1) under opposing migration and vaccination pressures.

Phillips JC - Biomed Res Int (2015)

Comparison of human strains from New York 2000 and 2003 with swine flu from Kansas 2007. The similarities are obvious, but what actually happened is described in Figures 9 and 10.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4309245&req=5

fig8: Comparison of human strains from New York 2000 and 2003 with swine flu from Kansas 2007. The similarities are obvious, but what actually happened is described in Figures 9 and 10.
Mentions: The 1989–2003 NA smoothing gain ended with the advent of the “swine flu” strains, which appeared in successive outbreaks, first in Hong Kong 1999 and next in New York in 2003 and in Berlin in 2005. The characteristic HA feature of these strains was a large hydrophobic increase in the N terminal sub-130 block, which was almost identical for New York and Berlin (Figure 7). These hydrophobic block increases correspond to block compressive elastic stiffening. As shown in Figure 8, comparison with an actual 2007 swine flu sequence shows that the latter sequences were also evolving rapidly. How did flu evolution in swine compare with human flu evolution?

Bottom Line: Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA.HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions.Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.

ABSTRACT
Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945-2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains.

Show MeSH
Related in: MedlinePlus