Limits...
Microbial community composition of transiently wetted Antarctic Dry Valley soils.

Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EJ, Cary SC - Front Microbiol (2015)

Bottom Line: Soil water content decreased to below ~3% in the arid soils.Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location.Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

View Article: PubMed Central - PubMed

Affiliation: College of Marine and Earth Sciences, University of Delaware Lewes, DE, USA.

ABSTRACT
During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

No MeSH data available.


Related in: MedlinePlus

Percentage composition of eukaryotic communities as based 18S rRNA-based amplicon pyrosequencing. The total number of sequences for each sample: NP4, 2556; NP2, 9623; MS1-3, 1058; MS1-2, 9060; ML1-4, 2958; ML1-2, 14642; BL4, 5417; BL2, 2101.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4309182&req=5

Figure 4: Percentage composition of eukaryotic communities as based 18S rRNA-based amplicon pyrosequencing. The total number of sequences for each sample: NP4, 2556; NP2, 9623; MS1-3, 1058; MS1-2, 9060; ML1-4, 2958; ML1-2, 14642; BL4, 5417; BL2, 2101.

Mentions: For Eukarya (Figure 4), obvious differences included a fungal dominance in arid soils (~41–70%) with the exception of BL (~5.5%) and both the Haptophyceae (dominant signatures related to Imantonia, Cruciplacolithus, and Reticulosphaera) and Stramenopiles (dominant signatures being Desmarestia, Paraphysomonas, and Chrysococcus) being highly represented in arid soils (~0.1–20% and ~3.5–9.5%, respectively) as opposed to wet soils (~0.0–0.1% and ~0.0–0.4%, respectively). Another obvious trend was Spathidium (of the Alveolata) being highly represented in arid soils (1.6–8.6% of total community), but rare (0.04%) to undetected in wetted soils. Viridiplantae (mainly Streptophyta signatures, as reflecting 16S rRNA results) were more common in wet soils, ~50–99% for BL, ML, and MS (with the exception of NP, at 1.2%), with the number of sequences detected in arid soils being considerably lower (i.e., ~4–16% for BL, ML and MS and ~18% for NP).


Microbial community composition of transiently wetted Antarctic Dry Valley soils.

Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EJ, Cary SC - Front Microbiol (2015)

Percentage composition of eukaryotic communities as based 18S rRNA-based amplicon pyrosequencing. The total number of sequences for each sample: NP4, 2556; NP2, 9623; MS1-3, 1058; MS1-2, 9060; ML1-4, 2958; ML1-2, 14642; BL4, 5417; BL2, 2101.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4309182&req=5

Figure 4: Percentage composition of eukaryotic communities as based 18S rRNA-based amplicon pyrosequencing. The total number of sequences for each sample: NP4, 2556; NP2, 9623; MS1-3, 1058; MS1-2, 9060; ML1-4, 2958; ML1-2, 14642; BL4, 5417; BL2, 2101.
Mentions: For Eukarya (Figure 4), obvious differences included a fungal dominance in arid soils (~41–70%) with the exception of BL (~5.5%) and both the Haptophyceae (dominant signatures related to Imantonia, Cruciplacolithus, and Reticulosphaera) and Stramenopiles (dominant signatures being Desmarestia, Paraphysomonas, and Chrysococcus) being highly represented in arid soils (~0.1–20% and ~3.5–9.5%, respectively) as opposed to wet soils (~0.0–0.1% and ~0.0–0.4%, respectively). Another obvious trend was Spathidium (of the Alveolata) being highly represented in arid soils (1.6–8.6% of total community), but rare (0.04%) to undetected in wetted soils. Viridiplantae (mainly Streptophyta signatures, as reflecting 16S rRNA results) were more common in wet soils, ~50–99% for BL, ML, and MS (with the exception of NP, at 1.2%), with the number of sequences detected in arid soils being considerably lower (i.e., ~4–16% for BL, ML and MS and ~18% for NP).

Bottom Line: Soil water content decreased to below ~3% in the arid soils.Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location.Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

View Article: PubMed Central - PubMed

Affiliation: College of Marine and Earth Sciences, University of Delaware Lewes, DE, USA.

ABSTRACT
During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

No MeSH data available.


Related in: MedlinePlus