Limits...
Epigenetic regulation of rice flowering and reproduction.

Shi J, Dong A, Shen WH - Front Plant Sci (2015)

Bottom Line: Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana.During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice.Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University Shanghai, China ; CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg Strasbourg, France.

ABSTRACT
Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana. Rice (Oryza sativa) is one of the most important food crops in the world and has more recently becoming a monocotyledonous model plant in functional genomics research. During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice. Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of structures involved in rice reproduction together with chromatin modifier genes listed in regulation of three different steps. Inflorescence produces spikelets (sp) that generate numerous flowers. A mature flower contains different types of organs including lemma (le), palea (pa), stemen (st), and pistil (pi). The female gametophyte ovule is formed inside of ovary of the pistil and at maturation contains four different types of cells: antipodal (ap), polar nuclei (pn), synergid (sy), and egg cell (ec). The male gametophyte pollen is produced inside of anther of the stamen and at maturation contains two sperm cells (sc) and one vegetative cell (vn). Upon fertilization, one sperm cell fuses with egg cell to produce embryo (em) and the other sperm cell fuses with the two polar nuclei to produce endosperm (en), together forming a mature seed. Chromatin modifier genes playing important regulatory roles in floral organogenesis, gametophyte development, and fertilization/seed development are listed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4309181&req=5

Figure 2: Schematic representation of structures involved in rice reproduction together with chromatin modifier genes listed in regulation of three different steps. Inflorescence produces spikelets (sp) that generate numerous flowers. A mature flower contains different types of organs including lemma (le), palea (pa), stemen (st), and pistil (pi). The female gametophyte ovule is formed inside of ovary of the pistil and at maturation contains four different types of cells: antipodal (ap), polar nuclei (pn), synergid (sy), and egg cell (ec). The male gametophyte pollen is produced inside of anther of the stamen and at maturation contains two sperm cells (sc) and one vegetative cell (vn). Upon fertilization, one sperm cell fuses with egg cell to produce embryo (em) and the other sperm cell fuses with the two polar nuclei to produce endosperm (en), together forming a mature seed. Chromatin modifier genes playing important regulatory roles in floral organogenesis, gametophyte development, and fertilization/seed development are listed.

Mentions: After flowering, plant sexual reproduction occurs in dedicated floral organs through sporogenesis, gametogenesis, embryo- and endosperm-genesis, resulting in seed formation. Studies in Arabidopsis have unraveled diverse epigenetic regulatory mechanisms as involved in different processes during floral organogenesis and plant sexual reproduction (Shen and Xu, 2009; Engelhorn et al., 2014; She and Baroux, 2014). Although more recent, studies in rice also have started to uncover multiple types of epigenetic modifiers involved in the regulation of plant reproduction (Figure 2).


Epigenetic regulation of rice flowering and reproduction.

Shi J, Dong A, Shen WH - Front Plant Sci (2015)

Schematic representation of structures involved in rice reproduction together with chromatin modifier genes listed in regulation of three different steps. Inflorescence produces spikelets (sp) that generate numerous flowers. A mature flower contains different types of organs including lemma (le), palea (pa), stemen (st), and pistil (pi). The female gametophyte ovule is formed inside of ovary of the pistil and at maturation contains four different types of cells: antipodal (ap), polar nuclei (pn), synergid (sy), and egg cell (ec). The male gametophyte pollen is produced inside of anther of the stamen and at maturation contains two sperm cells (sc) and one vegetative cell (vn). Upon fertilization, one sperm cell fuses with egg cell to produce embryo (em) and the other sperm cell fuses with the two polar nuclei to produce endosperm (en), together forming a mature seed. Chromatin modifier genes playing important regulatory roles in floral organogenesis, gametophyte development, and fertilization/seed development are listed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4309181&req=5

Figure 2: Schematic representation of structures involved in rice reproduction together with chromatin modifier genes listed in regulation of three different steps. Inflorescence produces spikelets (sp) that generate numerous flowers. A mature flower contains different types of organs including lemma (le), palea (pa), stemen (st), and pistil (pi). The female gametophyte ovule is formed inside of ovary of the pistil and at maturation contains four different types of cells: antipodal (ap), polar nuclei (pn), synergid (sy), and egg cell (ec). The male gametophyte pollen is produced inside of anther of the stamen and at maturation contains two sperm cells (sc) and one vegetative cell (vn). Upon fertilization, one sperm cell fuses with egg cell to produce embryo (em) and the other sperm cell fuses with the two polar nuclei to produce endosperm (en), together forming a mature seed. Chromatin modifier genes playing important regulatory roles in floral organogenesis, gametophyte development, and fertilization/seed development are listed.
Mentions: After flowering, plant sexual reproduction occurs in dedicated floral organs through sporogenesis, gametogenesis, embryo- and endosperm-genesis, resulting in seed formation. Studies in Arabidopsis have unraveled diverse epigenetic regulatory mechanisms as involved in different processes during floral organogenesis and plant sexual reproduction (Shen and Xu, 2009; Engelhorn et al., 2014; She and Baroux, 2014). Although more recent, studies in rice also have started to uncover multiple types of epigenetic modifiers involved in the regulation of plant reproduction (Figure 2).

Bottom Line: Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana.During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice.Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University Shanghai, China ; CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg Strasbourg, France.

ABSTRACT
Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana. Rice (Oryza sativa) is one of the most important food crops in the world and has more recently becoming a monocotyledonous model plant in functional genomics research. During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice. Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.

No MeSH data available.


Related in: MedlinePlus