Limits...
The effectiveness of proprioceptive training for improving motor function: a systematic review.

Aman JE, Elangovan N, Yeh IL, Konczak J - Front Hum Neurosci (2015)

Bottom Line: However, there is little agreement of what constitutes proprioceptive training and how effective it is.Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures.There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function.

View Article: PubMed Central - PubMed

Affiliation: Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA ; Center for Clinical Movement Science, University of Minnesota Minneapolis, MN, USA.

ABSTRACT

Objective: Numerous reports advocate that training of the proprioceptive sense is a viable behavioral therapy for improving impaired motor function. However, there is little agreement of what constitutes proprioceptive training and how effective it is. We therefore conducted a comprehensive, systematic review of the available literature in order to provide clarity to the notion of training the proprioceptive system.

Methods: Four major scientific databases were searched. The following criteria were subsequently applied: (1) A quantified pre- and post-treatment measure of proprioceptive function. (2) An intervention or training program believed to influence or enhance proprioceptive function. (3) Contained at least one form of treatment or outcome measure that is indicative of somatosensory function. From a total of 1284 articles, 51 studies fulfilled all criteria and were selected for further review.

Results: Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures. Applying muscle vibration above 30 Hz for longer durations (i.e., min vs. s) induced outcome improvements of up to 60%. Joint position and target reaching training consistently enhanced joint position sense (up to 109%) showing an average improvement of 48%. Cortical stroke was the most studied disease entity but no clear evidence indicated that proprioceptive training is differentially beneficial across the reported diseases.

Conclusions: There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function. However, there is a clear need for further work. Those forms of training utilizing both passive and active movements with and without visual feedback tended to be most beneficial. There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function.

No MeSH data available.


Related in: MedlinePlus

Effectiveness of proprioceptive training by type of intervention. Somatosensory, somatosensory-motor, balance and neurophysiological outcome measures were measured by device or instrument. If multiple outcome measures were reported from a single study that fell within the same classification (e.g., multiple clinical rating measures), only the most favorable result was reported. aStudies providing two types of intervention. bValues estimated from figures of the original article. cSignificant difference between pre- and post-test with no exact data reported. dMean percentage of improvement of each category. Studies not reporting exact data were not included in calculating the mean. Abbreviations: WBV, whole body vibration. TENS, transcutaneous electrical nerve stimulation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4309156&req=5

Figure 2: Effectiveness of proprioceptive training by type of intervention. Somatosensory, somatosensory-motor, balance and neurophysiological outcome measures were measured by device or instrument. If multiple outcome measures were reported from a single study that fell within the same classification (e.g., multiple clinical rating measures), only the most favorable result was reported. aStudies providing two types of intervention. bValues estimated from figures of the original article. cSignificant difference between pre- and post-test with no exact data reported. dMean percentage of improvement of each category. Studies not reporting exact data were not included in calculating the mean. Abbreviations: WBV, whole body vibration. TENS, transcutaneous electrical nerve stimulation.

Mentions: In general, outcome measures were either based on a clinical rating scale or were obtained via some type of sensor involving a device (e.g., manipulandum for forearm joint position measurement, passive motion apparatus for deriving psychophysical thresholds, or force platform for measures of posture). In order to structure the wide variety of outcome measures, we assigned each study to one of five categories. All studies that exclusively used clinical rating scales as outcome measures were pooled into one category (clinical rating). The device dependent measurements were divided into four separate categories: somatosensory, somatosensory-motor, balance, and neurophysiological. A somatosensory measure consisted of thresholds or joint position errors obtained while the limb or body was moved passively, the somatosensory-motor category included articles reporting the same variables (thresholds, matching errors), but these outcomes were obtained when at least one limb or body segment was actively moved by the subject. The balance category included measures of whole body sway such as sway area, or displacement of the center of pressure (COP). The neurophysiological category included studies that reported neurophysiological measures associated with somatosensory or proprioceptive processing such as somatosensory evoked potentials (SEPs), or measures from functional MRI or transcranial magnetic stimulation (TMS). To get a sense of the heterogeneity of the reported outcome measures, we here provide a brief synopsis below. In addition, Figure 2 lists the outcome measure category of each article.


The effectiveness of proprioceptive training for improving motor function: a systematic review.

Aman JE, Elangovan N, Yeh IL, Konczak J - Front Hum Neurosci (2015)

Effectiveness of proprioceptive training by type of intervention. Somatosensory, somatosensory-motor, balance and neurophysiological outcome measures were measured by device or instrument. If multiple outcome measures were reported from a single study that fell within the same classification (e.g., multiple clinical rating measures), only the most favorable result was reported. aStudies providing two types of intervention. bValues estimated from figures of the original article. cSignificant difference between pre- and post-test with no exact data reported. dMean percentage of improvement of each category. Studies not reporting exact data were not included in calculating the mean. Abbreviations: WBV, whole body vibration. TENS, transcutaneous electrical nerve stimulation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4309156&req=5

Figure 2: Effectiveness of proprioceptive training by type of intervention. Somatosensory, somatosensory-motor, balance and neurophysiological outcome measures were measured by device or instrument. If multiple outcome measures were reported from a single study that fell within the same classification (e.g., multiple clinical rating measures), only the most favorable result was reported. aStudies providing two types of intervention. bValues estimated from figures of the original article. cSignificant difference between pre- and post-test with no exact data reported. dMean percentage of improvement of each category. Studies not reporting exact data were not included in calculating the mean. Abbreviations: WBV, whole body vibration. TENS, transcutaneous electrical nerve stimulation.
Mentions: In general, outcome measures were either based on a clinical rating scale or were obtained via some type of sensor involving a device (e.g., manipulandum for forearm joint position measurement, passive motion apparatus for deriving psychophysical thresholds, or force platform for measures of posture). In order to structure the wide variety of outcome measures, we assigned each study to one of five categories. All studies that exclusively used clinical rating scales as outcome measures were pooled into one category (clinical rating). The device dependent measurements were divided into four separate categories: somatosensory, somatosensory-motor, balance, and neurophysiological. A somatosensory measure consisted of thresholds or joint position errors obtained while the limb or body was moved passively, the somatosensory-motor category included articles reporting the same variables (thresholds, matching errors), but these outcomes were obtained when at least one limb or body segment was actively moved by the subject. The balance category included measures of whole body sway such as sway area, or displacement of the center of pressure (COP). The neurophysiological category included studies that reported neurophysiological measures associated with somatosensory or proprioceptive processing such as somatosensory evoked potentials (SEPs), or measures from functional MRI or transcranial magnetic stimulation (TMS). To get a sense of the heterogeneity of the reported outcome measures, we here provide a brief synopsis below. In addition, Figure 2 lists the outcome measure category of each article.

Bottom Line: However, there is little agreement of what constitutes proprioceptive training and how effective it is.Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures.There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function.

View Article: PubMed Central - PubMed

Affiliation: Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA ; Center for Clinical Movement Science, University of Minnesota Minneapolis, MN, USA.

ABSTRACT

Objective: Numerous reports advocate that training of the proprioceptive sense is a viable behavioral therapy for improving impaired motor function. However, there is little agreement of what constitutes proprioceptive training and how effective it is. We therefore conducted a comprehensive, systematic review of the available literature in order to provide clarity to the notion of training the proprioceptive system.

Methods: Four major scientific databases were searched. The following criteria were subsequently applied: (1) A quantified pre- and post-treatment measure of proprioceptive function. (2) An intervention or training program believed to influence or enhance proprioceptive function. (3) Contained at least one form of treatment or outcome measure that is indicative of somatosensory function. From a total of 1284 articles, 51 studies fulfilled all criteria and were selected for further review.

Results: Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures. Applying muscle vibration above 30 Hz for longer durations (i.e., min vs. s) induced outcome improvements of up to 60%. Joint position and target reaching training consistently enhanced joint position sense (up to 109%) showing an average improvement of 48%. Cortical stroke was the most studied disease entity but no clear evidence indicated that proprioceptive training is differentially beneficial across the reported diseases.

Conclusions: There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function. However, there is a clear need for further work. Those forms of training utilizing both passive and active movements with and without visual feedback tended to be most beneficial. There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function.

No MeSH data available.


Related in: MedlinePlus