Limits...
Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray.

Zhou GF, Liu YZ, Sheng O, Wei QJ, Yang CQ, Peng SA - Front Plant Sci (2015)

Bottom Line: Boron (B) deficiency has seriously negative effect on citrus production.All these results indicated that CC was more tolerant than TO to B-deficiency stress.The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University Wuhan, China ; National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University Ganzhou, China.

ABSTRACT
Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

No MeSH data available.


Related in: MedlinePlus

Distribution of differentially expressed unique genes in two rootstocks, CC, and TO. A total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4309116&req=5

Figure 4: Distribution of differentially expressed unique genes in two rootstocks, CC, and TO. A total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories.

Mentions: All these unique genes were functionally annotated by blasting against the GenBank non-redundant protein database, and subsequently submitted to GenBank with the accession numbers JK817580 to JK817718 (Table S2). Distribution of differentially expressed genes of citrus rootstocks are shown in Figure 4, a total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories. The number of differentially expressed genes was higher in CC than TO of all functional categories, except for the functional category of subcellular localization. The majority of differentially expressed genes in CC were involved in transport, cell rescue and defense, and metabolism. While in TO were involved in cell rescue and defense, subcellular localization, and protein fate.


Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray.

Zhou GF, Liu YZ, Sheng O, Wei QJ, Yang CQ, Peng SA - Front Plant Sci (2015)

Distribution of differentially expressed unique genes in two rootstocks, CC, and TO. A total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4309116&req=5

Figure 4: Distribution of differentially expressed unique genes in two rootstocks, CC, and TO. A total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories.
Mentions: All these unique genes were functionally annotated by blasting against the GenBank non-redundant protein database, and subsequently submitted to GenBank with the accession numbers JK817580 to JK817718 (Table S2). Distribution of differentially expressed genes of citrus rootstocks are shown in Figure 4, a total of 139 unique genes were grouped into 11 functional categories based on MIPS functional categories. The number of differentially expressed genes was higher in CC than TO of all functional categories, except for the functional category of subcellular localization. The majority of differentially expressed genes in CC were involved in transport, cell rescue and defense, and metabolism. While in TO were involved in cell rescue and defense, subcellular localization, and protein fate.

Bottom Line: Boron (B) deficiency has seriously negative effect on citrus production.All these results indicated that CC was more tolerant than TO to B-deficiency stress.The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University Wuhan, China ; National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University Ganzhou, China.

ABSTRACT
Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

No MeSH data available.


Related in: MedlinePlus