Limits...
Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

Abdallah JF, Okoth SA, Fontecha GA, Torres RE, Banegas EI, Matute ML, Bucheli ST, Goldman IF, de Oliveira AM, Barnwell JW, Udhayakumar V - Malar. J. (2015)

Bottom Line: It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8.It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other.The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.

View Article: PubMed Central - PubMed

Affiliation: Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, MS D-67, Atlanta 30333, GA, USA. vxu0@cdc.gov.

ABSTRACT

Background: Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites.

Methods: Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection.

Results: It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other.

Conclusion: The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.

Show MeSH

Related in: MedlinePlus

Prevalence of deletions inpfhrp3and neighboring genes inP. falciparumisolates from Puerto Lempira, Nicaragua. The map shows the location of Honduras in relation to neighboring countries in Central America. All parasite isolates analysed were found to be positive for pfhrp2 and its flanking genes (not shown). The three pie charts shown illustrate the proportion of parasite isolates with deletions in pfhrp3 and its neighboring genes. The percentages shown represent proportions of samples out of the total samples that were 18S rRNA- and msp2-positive.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4308922&req=5

Fig2: Prevalence of deletions inpfhrp3and neighboring genes inP. falciparumisolates from Puerto Lempira, Nicaragua. The map shows the location of Honduras in relation to neighboring countries in Central America. All parasite isolates analysed were found to be positive for pfhrp2 and its flanking genes (not shown). The three pie charts shown illustrate the proportion of parasite isolates with deletions in pfhrp3 and its neighboring genes. The percentages shown represent proportions of samples out of the total samples that were 18S rRNA- and msp2-positive.

Mentions: Thirty out of 68 isolates (44.1%) tested negative for the pfhrp3 gene while 32 isolates (47.1%) showed deletion of the Mal13P1.475 gene that is located upstream of pfhrp3 (Figure 2). Thirteen isolates had deleted the Mal13 P1.485 gene, located downstream of pfhrp3 (Figure 2).Figure 2


Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

Abdallah JF, Okoth SA, Fontecha GA, Torres RE, Banegas EI, Matute ML, Bucheli ST, Goldman IF, de Oliveira AM, Barnwell JW, Udhayakumar V - Malar. J. (2015)

Prevalence of deletions inpfhrp3and neighboring genes inP. falciparumisolates from Puerto Lempira, Nicaragua. The map shows the location of Honduras in relation to neighboring countries in Central America. All parasite isolates analysed were found to be positive for pfhrp2 and its flanking genes (not shown). The three pie charts shown illustrate the proportion of parasite isolates with deletions in pfhrp3 and its neighboring genes. The percentages shown represent proportions of samples out of the total samples that were 18S rRNA- and msp2-positive.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4308922&req=5

Fig2: Prevalence of deletions inpfhrp3and neighboring genes inP. falciparumisolates from Puerto Lempira, Nicaragua. The map shows the location of Honduras in relation to neighboring countries in Central America. All parasite isolates analysed were found to be positive for pfhrp2 and its flanking genes (not shown). The three pie charts shown illustrate the proportion of parasite isolates with deletions in pfhrp3 and its neighboring genes. The percentages shown represent proportions of samples out of the total samples that were 18S rRNA- and msp2-positive.
Mentions: Thirty out of 68 isolates (44.1%) tested negative for the pfhrp3 gene while 32 isolates (47.1%) showed deletion of the Mal13P1.475 gene that is located upstream of pfhrp3 (Figure 2). Thirteen isolates had deleted the Mal13 P1.485 gene, located downstream of pfhrp3 (Figure 2).Figure 2

Bottom Line: It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8.It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other.The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.

View Article: PubMed Central - PubMed

Affiliation: Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, MS D-67, Atlanta 30333, GA, USA. vxu0@cdc.gov.

ABSTRACT

Background: Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites.

Methods: Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection.

Results: It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other.

Conclusion: The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.

Show MeSH
Related in: MedlinePlus