Limits...
Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment.

Abid MF, Abdulrahman AA, Hamza NH - J Environ Health Sci Eng (2014)

Bottom Line: The analysis results confirmed that the water from the Hybrid-System could be safely recycled and reuse.It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model.A power-law based empirical correlation was developed for the photocatalysis system, related the dye degradation (R) with studied operating conditions.

View Article: PubMed Central - PubMed

Affiliation: Chemical Engineering Department, University of Technology, Baghdad, Iraq.

ABSTRACT
This work focused on the degradation of toxic organic compounds such as methyl violet dye (MV) in water, using a combined photocatalysis/low pressure reverse osmosis (LPRO) system. The performance of the hybrid system was investigated in terms of the degradation efficiency of MV, COD and membrane separation of TiO2. The aim of the present study was to design a novel solar reactor and analyze its performance for removal of MV from water with titanium dioxide as the photocatalyst. Various operating parameters were studied to investigate the behavior of the designed reactor like initial dye concentration (C = 10-50 mg/L), loading of catalyst (CTiO2 = 200-800 mg/L), suspension flow rate (QL = 0.3-1.5 L/min), pH of suspension (5-10), and H2O2 concentration (CH2O2 = 200-1000 mg/L). The operating parameters were optimized to give higher efficiency to the reactor performance. Optimum parameters of the photocatalysis process were loading of catalyst (400 mg/L), suspension flow rate (0.5 L/min), H2O2 concentration (400 mg/L), and pH = 5. The designed reactor when operating at optimum conditions offered a degradation of MV up to 0.9527 within one hours of operation time, while a conversion of 0.9995 was obtained in three hours. The effluent from the photocatalytic reactor was fed to a LPRO separation system which produced permeate of turbidity value of 0.09 NTU which is closed to that of drinking water (i.e., 0.08 NTU). The product water was analyzed using UV-spectrophotometer and FTIR. The analysis results confirmed that the water from the Hybrid-System could be safely recycled and reuse. It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model. A power-law based empirical correlation was developed for the photocatalysis system, related the dye degradation (R) with studied operating conditions.

No MeSH data available.


Related in: MedlinePlus

Contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4308886&req=5

Fig19: Contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions.

Mentions: Samples were taken after 180 min from the reactor effluent analyzed with FTIR (type: Bruker Tensor 27) after neutralization and filtration with (0.25) μm flat paper. Figure 18 shows a printout of the FTIR instrument. The Figure illustrates two curves, the red one is for the contaminated sample with dye concentration of 30 mg/L. The blue curve is for the sample taken at the reactor effluent. Three small peaks corresponding to wavenumbers of 1172.6, 1363.99, and 2348.71 cm−1 appeared on the red curve represent functional groups of C-C, C-O, C-N, C, N, O. These groups were not found on the blue curve which represents the sample of the reactor effluent. Comparison between the two plots confirms the disappearance of these groups. (Figure 19) plots a contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions The Figure at the top illustrates the functional groups in the sample taken at the outlet of the reactor after 180 min., while the Figure at the bottom shows an analysis of drinking water. Obviously the plots confirm that the degradation almost complete.Figure 18


Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment.

Abid MF, Abdulrahman AA, Hamza NH - J Environ Health Sci Eng (2014)

Contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4308886&req=5

Fig19: Contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions.
Mentions: Samples were taken after 180 min from the reactor effluent analyzed with FTIR (type: Bruker Tensor 27) after neutralization and filtration with (0.25) μm flat paper. Figure 18 shows a printout of the FTIR instrument. The Figure illustrates two curves, the red one is for the contaminated sample with dye concentration of 30 mg/L. The blue curve is for the sample taken at the reactor effluent. Three small peaks corresponding to wavenumbers of 1172.6, 1363.99, and 2348.71 cm−1 appeared on the red curve represent functional groups of C-C, C-O, C-N, C, N, O. These groups were not found on the blue curve which represents the sample of the reactor effluent. Comparison between the two plots confirms the disappearance of these groups. (Figure 19) plots a contrast of FTIR of MV dye compared with tap water after 180 min at optimum operating conditions The Figure at the top illustrates the functional groups in the sample taken at the outlet of the reactor after 180 min., while the Figure at the bottom shows an analysis of drinking water. Obviously the plots confirm that the degradation almost complete.Figure 18

Bottom Line: The analysis results confirmed that the water from the Hybrid-System could be safely recycled and reuse.It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model.A power-law based empirical correlation was developed for the photocatalysis system, related the dye degradation (R) with studied operating conditions.

View Article: PubMed Central - PubMed

Affiliation: Chemical Engineering Department, University of Technology, Baghdad, Iraq.

ABSTRACT
This work focused on the degradation of toxic organic compounds such as methyl violet dye (MV) in water, using a combined photocatalysis/low pressure reverse osmosis (LPRO) system. The performance of the hybrid system was investigated in terms of the degradation efficiency of MV, COD and membrane separation of TiO2. The aim of the present study was to design a novel solar reactor and analyze its performance for removal of MV from water with titanium dioxide as the photocatalyst. Various operating parameters were studied to investigate the behavior of the designed reactor like initial dye concentration (C = 10-50 mg/L), loading of catalyst (CTiO2 = 200-800 mg/L), suspension flow rate (QL = 0.3-1.5 L/min), pH of suspension (5-10), and H2O2 concentration (CH2O2 = 200-1000 mg/L). The operating parameters were optimized to give higher efficiency to the reactor performance. Optimum parameters of the photocatalysis process were loading of catalyst (400 mg/L), suspension flow rate (0.5 L/min), H2O2 concentration (400 mg/L), and pH = 5. The designed reactor when operating at optimum conditions offered a degradation of MV up to 0.9527 within one hours of operation time, while a conversion of 0.9995 was obtained in three hours. The effluent from the photocatalytic reactor was fed to a LPRO separation system which produced permeate of turbidity value of 0.09 NTU which is closed to that of drinking water (i.e., 0.08 NTU). The product water was analyzed using UV-spectrophotometer and FTIR. The analysis results confirmed that the water from the Hybrid-System could be safely recycled and reuse. It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model. A power-law based empirical correlation was developed for the photocatalysis system, related the dye degradation (R) with studied operating conditions.

No MeSH data available.


Related in: MedlinePlus