Limits...
Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

Babault N, Païzis C, Deley G, Guérin-Deremaux L, Saniez MH, Lefranc-Millot C, Allaert FA - J Int Soc Sports Nutr (2015)

Bottom Line: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition.Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001).In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening.

View Article: PubMed Central - PubMed

Affiliation: National Institute for Health and Medical Research, (INSERM), unit 1093, Cognition, Action and Sensorimotor Plasticity, Dijon, France ; Centre for Performance Expertise, UFR STAPS, Dijon, France ; Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France.

ABSTRACT

Background: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program.

Methods: One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer.

Results: Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups.

Conclusions: In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products.

Trial registration: The present trial has been registered at ClinicalTrials.gov (NCT02128516).

No MeSH data available.


Related in: MedlinePlus

CONSORT diagram outlining participants’ inclusion and drop out.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4307635&req=5

Fig2: CONSORT diagram outlining participants’ inclusion and drop out.

Mentions: Twenty four subjects left the study early due to personal reasons. At the end of the experimental procedure, 137 subjects were considered for analysis with 47 in the Pea group, 46 in the Whey group and 44 in the Placebo group (see Figure 2 for the CONSORT Diagram). Quantitative variables were presented as mean values and standard deviations. Values were tested using a repeated measures analysis of variances (ANOVA). Groups were used as independent variables and time (D0, D42, and D84) was used as the repeated variable. A sensitivity analysis was also conducted and considered subjects with a 1-RM at inclusion <25 kg (median value of study sample). Sixty eight subjects were considered for this sensitivity analysis. In the case of significant main effects or interactions, Scheffé post-hoc tests were conducted. Qualitative variables (supplementation compliance or adverse effects) were presented as absolute and relative frequencies and were tested by using a Chi square test. Statistics were conducted using SAS software (Ver. 9.2, SAS Institute, Inc., Cary, NC). P < 0.05 was taken as the level of statistical significance for all procedures.Figure 2


Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

Babault N, Païzis C, Deley G, Guérin-Deremaux L, Saniez MH, Lefranc-Millot C, Allaert FA - J Int Soc Sports Nutr (2015)

CONSORT diagram outlining participants’ inclusion and drop out.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4307635&req=5

Fig2: CONSORT diagram outlining participants’ inclusion and drop out.
Mentions: Twenty four subjects left the study early due to personal reasons. At the end of the experimental procedure, 137 subjects were considered for analysis with 47 in the Pea group, 46 in the Whey group and 44 in the Placebo group (see Figure 2 for the CONSORT Diagram). Quantitative variables were presented as mean values and standard deviations. Values were tested using a repeated measures analysis of variances (ANOVA). Groups were used as independent variables and time (D0, D42, and D84) was used as the repeated variable. A sensitivity analysis was also conducted and considered subjects with a 1-RM at inclusion <25 kg (median value of study sample). Sixty eight subjects were considered for this sensitivity analysis. In the case of significant main effects or interactions, Scheffé post-hoc tests were conducted. Qualitative variables (supplementation compliance or adverse effects) were presented as absolute and relative frequencies and were tested by using a Chi square test. Statistics were conducted using SAS software (Ver. 9.2, SAS Institute, Inc., Cary, NC). P < 0.05 was taken as the level of statistical significance for all procedures.Figure 2

Bottom Line: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition.Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001).In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening.

View Article: PubMed Central - PubMed

Affiliation: National Institute for Health and Medical Research, (INSERM), unit 1093, Cognition, Action and Sensorimotor Plasticity, Dijon, France ; Centre for Performance Expertise, UFR STAPS, Dijon, France ; Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France.

ABSTRACT

Background: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program.

Methods: One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer.

Results: Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups.

Conclusions: In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products.

Trial registration: The present trial has been registered at ClinicalTrials.gov (NCT02128516).

No MeSH data available.


Related in: MedlinePlus