Limits...
Bone morphogenetic protein signaling in vertebrate motor neurons and neuromuscular communication.

Osses N, Henríquez JP - Front Cell Neurosci (2015)

Bottom Line: Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses.Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ.Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.

View Article: PubMed Central - PubMed

Affiliation: BMP Research Group, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile.

ABSTRACT
An accurate communication between motor neurons and skeletal muscle fibers is required for the proper assembly, growth and maintenance of neuromuscular junctions (NMJs). Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ. Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.

No MeSH data available.


BMP signaling. Smad signaling is initiated upon phosphorylation of Smad-1, -5 or -8 by a heteromeric complex of BMPRII, BMPRI and BMP ligand. Phosphorylated Smads recruit Smad-4 and translocate to the nucleus where, in association with co-repressors or co-activators, regulate the transcription of specific target genes. Non Smad pathways, such as p38 MAP kinase and PI3 kinase, are also initiated by heteromeric complexes. The activity of cytoskeleton regulators mediating actin remodeling (LIMK1) and microtubule stabilization (JNK) are dependent on its ability to bind to the long cytoplasmic tail of BMPRII.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4307192&req=5

Figure 1: BMP signaling. Smad signaling is initiated upon phosphorylation of Smad-1, -5 or -8 by a heteromeric complex of BMPRII, BMPRI and BMP ligand. Phosphorylated Smads recruit Smad-4 and translocate to the nucleus where, in association with co-repressors or co-activators, regulate the transcription of specific target genes. Non Smad pathways, such as p38 MAP kinase and PI3 kinase, are also initiated by heteromeric complexes. The activity of cytoskeleton regulators mediating actin remodeling (LIMK1) and microtubule stabilization (JNK) are dependent on its ability to bind to the long cytoplasmic tail of BMPRII.

Mentions: Early events in BMP signaling involve the formation of heteromeric complexes of two types of transmembrane receptors with serine/threonine kinase activities, named type I and type II. Receptors of both types are needed to form a functional complex for signal transduction (Figure 1; Yamashita et al., 1994; Liu et al., 1995). BMPs can interact with three distinct type I (ActRIA, BMPRIA and BMPRIB) or type II receptors (BMPRII, ActRIIA and ActRIIB). This interaction relies on their affinity, but also on the specific expression pattern of the different BMP receptors (Sebald et al., 2004; Lin et al., 2006). Detailed analyses of BMP pathways came from studies of cell responses to BMP-2 (Sieber et al., 2009). BMP-2 binding to a preformed heteromeric complex of BMPRII and BMPRI initiate a classical Smad-dependent signaling pathway (see Figure 1; Gilboa et al., 2000; Nohe et al., 2002). Upon BMP-2 binding, BMPRI is phosphorylated by BMPRII. Activated BMPRI initiates the phosphorylation of specific receptor-regulated Smad proteins, namely R-Smad-1, -5 or -8, which form heteromeric complexes with the common mediator Smad-4. Such complexes translocate to the nucleus to regulate the transcription of specific target genes in cooperation with co-repressors or co-activators (Shi and Massagué, 2003; Nohe et al., 2004; Miyazono et al., 2005).


Bone morphogenetic protein signaling in vertebrate motor neurons and neuromuscular communication.

Osses N, Henríquez JP - Front Cell Neurosci (2015)

BMP signaling. Smad signaling is initiated upon phosphorylation of Smad-1, -5 or -8 by a heteromeric complex of BMPRII, BMPRI and BMP ligand. Phosphorylated Smads recruit Smad-4 and translocate to the nucleus where, in association with co-repressors or co-activators, regulate the transcription of specific target genes. Non Smad pathways, such as p38 MAP kinase and PI3 kinase, are also initiated by heteromeric complexes. The activity of cytoskeleton regulators mediating actin remodeling (LIMK1) and microtubule stabilization (JNK) are dependent on its ability to bind to the long cytoplasmic tail of BMPRII.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4307192&req=5

Figure 1: BMP signaling. Smad signaling is initiated upon phosphorylation of Smad-1, -5 or -8 by a heteromeric complex of BMPRII, BMPRI and BMP ligand. Phosphorylated Smads recruit Smad-4 and translocate to the nucleus where, in association with co-repressors or co-activators, regulate the transcription of specific target genes. Non Smad pathways, such as p38 MAP kinase and PI3 kinase, are also initiated by heteromeric complexes. The activity of cytoskeleton regulators mediating actin remodeling (LIMK1) and microtubule stabilization (JNK) are dependent on its ability to bind to the long cytoplasmic tail of BMPRII.
Mentions: Early events in BMP signaling involve the formation of heteromeric complexes of two types of transmembrane receptors with serine/threonine kinase activities, named type I and type II. Receptors of both types are needed to form a functional complex for signal transduction (Figure 1; Yamashita et al., 1994; Liu et al., 1995). BMPs can interact with three distinct type I (ActRIA, BMPRIA and BMPRIB) or type II receptors (BMPRII, ActRIIA and ActRIIB). This interaction relies on their affinity, but also on the specific expression pattern of the different BMP receptors (Sebald et al., 2004; Lin et al., 2006). Detailed analyses of BMP pathways came from studies of cell responses to BMP-2 (Sieber et al., 2009). BMP-2 binding to a preformed heteromeric complex of BMPRII and BMPRI initiate a classical Smad-dependent signaling pathway (see Figure 1; Gilboa et al., 2000; Nohe et al., 2002). Upon BMP-2 binding, BMPRI is phosphorylated by BMPRII. Activated BMPRI initiates the phosphorylation of specific receptor-regulated Smad proteins, namely R-Smad-1, -5 or -8, which form heteromeric complexes with the common mediator Smad-4. Such complexes translocate to the nucleus to regulate the transcription of specific target genes in cooperation with co-repressors or co-activators (Shi and Massagué, 2003; Nohe et al., 2004; Miyazono et al., 2005).

Bottom Line: Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses.Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ.Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.

View Article: PubMed Central - PubMed

Affiliation: BMP Research Group, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile.

ABSTRACT
An accurate communication between motor neurons and skeletal muscle fibers is required for the proper assembly, growth and maintenance of neuromuscular junctions (NMJs). Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ. Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.

No MeSH data available.