Limits...
Marine peptides and their anti-infective activities.

Kang HK, Seo CH, Park Y - Mar Drugs (2015)

Bottom Line: Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities.In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites.Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea. hkkang129@gmail.com.

ABSTRACT
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

Show MeSH

Related in: MedlinePlus

Structure of C(15)-surfactin (44). Surfactin was isolated from Bacillus amyloliquefaciens [101].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4306955&req=5

marinedrugs-13-00618-f013: Structure of C(15)-surfactin (44). Surfactin was isolated from Bacillus amyloliquefaciens [101].

Mentions: Surfactin is a lipopeptide biosurfactant with a broad spectrum of antimicrobial and antiviral activity. Surfactins have a peptide backbone composed of seven amino acids connected to a β-hydroxy fatty acid, which may vary from C-10 to C-16 [62] (Figure 13).


Marine peptides and their anti-infective activities.

Kang HK, Seo CH, Park Y - Mar Drugs (2015)

Structure of C(15)-surfactin (44). Surfactin was isolated from Bacillus amyloliquefaciens [101].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4306955&req=5

marinedrugs-13-00618-f013: Structure of C(15)-surfactin (44). Surfactin was isolated from Bacillus amyloliquefaciens [101].
Mentions: Surfactin is a lipopeptide biosurfactant with a broad spectrum of antimicrobial and antiviral activity. Surfactins have a peptide backbone composed of seven amino acids connected to a β-hydroxy fatty acid, which may vary from C-10 to C-16 [62] (Figure 13).

Bottom Line: Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities.In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites.Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea. hkkang129@gmail.com.

ABSTRACT
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

Show MeSH
Related in: MedlinePlus