Limits...
Adult neurogenesis in humans- common and unique traits in mammals.

Ernst A, Frisén J - PLoS Biol. (2015)

Bottom Line: Data on the extent and dynamics of adult neurogenesis in adult humans are starting to emerge, and there are clear similarities and differences compared to other mammals.Why do these differences arise?And what do they mean?

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

ABSTRACT
New neurons are continuously generated in specific regions in the adult brain. Studies in rodents have demonstrated that adult-born neurons have specific functional features and mediate neural plasticity. Data on the extent and dynamics of adult neurogenesis in adult humans are starting to emerge, and there are clear similarities and differences compared to other mammals. Why do these differences arise? And what do they mean?

No MeSH data available.


Schematic illustration of adult neurogenesis in the adult rodent and human brain.New neurons are indicated in green. (A) Neuroblasts that are generated in the subventricular zone lining the lateral ventricle (LV) in rodents migrate to the OB, a structure crucial for olfaction, where they integrate as interneurons. (B) Neuroblasts are present in the subventricular zone also in humans, and new neurons integrate in the adjacent striatum, which plays an essential role in movement coordination, procedural learning, and memory, as well as motivational and emotional control. New neurons are continuously generated in the DG of the hippocampus—a brain structure essential for memory and mood control—in both rodents and humans (A, B). A limited subpopulation of DG neurons are subject to exchange in rodents (C), whereas the majority turn over in humans (D) [4–6]. The neurons within the turning over population are continuously exchanged. A value of 100% on the y-axis means that all neurons have been replaced since the individual’s birth.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4306487&req=5

pbio.1002045.g001: Schematic illustration of adult neurogenesis in the adult rodent and human brain.New neurons are indicated in green. (A) Neuroblasts that are generated in the subventricular zone lining the lateral ventricle (LV) in rodents migrate to the OB, a structure crucial for olfaction, where they integrate as interneurons. (B) Neuroblasts are present in the subventricular zone also in humans, and new neurons integrate in the adjacent striatum, which plays an essential role in movement coordination, procedural learning, and memory, as well as motivational and emotional control. New neurons are continuously generated in the DG of the hippocampus—a brain structure essential for memory and mood control—in both rodents and humans (A, B). A limited subpopulation of DG neurons are subject to exchange in rodents (C), whereas the majority turn over in humans (D) [4–6]. The neurons within the turning over population are continuously exchanged. A value of 100% on the y-axis means that all neurons have been replaced since the individual’s birth.

Mentions: Carbon dating demonstrated that hippocampal neurons are generated at comparable rates in middle-aged humans and mice [4]. However, humans present a somewhat different pattern of adult hippocampal neurogenesis as compared to rodents (Fig. 1). The vast majority of the neurons in the dentate gyrus (DG), the subdivision of the hippocampus with neuronal turnover, is subject to exchange in humans, compared to approximately 10% in mice [4–6]. Moreover, humans show a less pronounced age-dependent decline in hippocampal neurogenesis during adulthood compared to mice [4]. Adult-born hippocampal neurons are more likely to be lost than the neurons born during development in humans [4]. Whether this is also the case in other mammals has not been directly investigated, but data from mice is consistent with this notion [7].


Adult neurogenesis in humans- common and unique traits in mammals.

Ernst A, Frisén J - PLoS Biol. (2015)

Schematic illustration of adult neurogenesis in the adult rodent and human brain.New neurons are indicated in green. (A) Neuroblasts that are generated in the subventricular zone lining the lateral ventricle (LV) in rodents migrate to the OB, a structure crucial for olfaction, where they integrate as interneurons. (B) Neuroblasts are present in the subventricular zone also in humans, and new neurons integrate in the adjacent striatum, which plays an essential role in movement coordination, procedural learning, and memory, as well as motivational and emotional control. New neurons are continuously generated in the DG of the hippocampus—a brain structure essential for memory and mood control—in both rodents and humans (A, B). A limited subpopulation of DG neurons are subject to exchange in rodents (C), whereas the majority turn over in humans (D) [4–6]. The neurons within the turning over population are continuously exchanged. A value of 100% on the y-axis means that all neurons have been replaced since the individual’s birth.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4306487&req=5

pbio.1002045.g001: Schematic illustration of adult neurogenesis in the adult rodent and human brain.New neurons are indicated in green. (A) Neuroblasts that are generated in the subventricular zone lining the lateral ventricle (LV) in rodents migrate to the OB, a structure crucial for olfaction, where they integrate as interneurons. (B) Neuroblasts are present in the subventricular zone also in humans, and new neurons integrate in the adjacent striatum, which plays an essential role in movement coordination, procedural learning, and memory, as well as motivational and emotional control. New neurons are continuously generated in the DG of the hippocampus—a brain structure essential for memory and mood control—in both rodents and humans (A, B). A limited subpopulation of DG neurons are subject to exchange in rodents (C), whereas the majority turn over in humans (D) [4–6]. The neurons within the turning over population are continuously exchanged. A value of 100% on the y-axis means that all neurons have been replaced since the individual’s birth.
Mentions: Carbon dating demonstrated that hippocampal neurons are generated at comparable rates in middle-aged humans and mice [4]. However, humans present a somewhat different pattern of adult hippocampal neurogenesis as compared to rodents (Fig. 1). The vast majority of the neurons in the dentate gyrus (DG), the subdivision of the hippocampus with neuronal turnover, is subject to exchange in humans, compared to approximately 10% in mice [4–6]. Moreover, humans show a less pronounced age-dependent decline in hippocampal neurogenesis during adulthood compared to mice [4]. Adult-born hippocampal neurons are more likely to be lost than the neurons born during development in humans [4]. Whether this is also the case in other mammals has not been directly investigated, but data from mice is consistent with this notion [7].

Bottom Line: Data on the extent and dynamics of adult neurogenesis in adult humans are starting to emerge, and there are clear similarities and differences compared to other mammals.Why do these differences arise?And what do they mean?

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

ABSTRACT
New neurons are continuously generated in specific regions in the adult brain. Studies in rodents have demonstrated that adult-born neurons have specific functional features and mediate neural plasticity. Data on the extent and dynamics of adult neurogenesis in adult humans are starting to emerge, and there are clear similarities and differences compared to other mammals. Why do these differences arise? And what do they mean?

No MeSH data available.