Limits...
The role of Latin America's land and water resources for global food security: environmental trade-offs of future food production pathways.

Flachsbarth I, Willaarts B, Xie H, Pitois G, Mueller ND, Ringler C, Garrido A - PLoS ONE (2015)

Bottom Line: Doing so without compromising environmental integrity is an even greater challenge.Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view.Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.

View Article: PubMed Central - PubMed

Affiliation: Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Department of Agricultural Economics and Social Sciences, Universidad Politécnica de Madrid, Madrid, Spain; Water Observatory, Botin Foundation, Madrid, Spain.

ABSTRACT
One of humanity's major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC's agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)-a global dynamic partial equilibrium model of the agricultural sector-to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.

Show MeSH
World food price changes under different scenarios.(a): World price deviations in percent compared to BAU (1) in year 2050; (b): World price changes in percent within each scenario from 2010 to 2050. BAU refers to the Business-as-Usual scenario. Scenarios are described in Table 1. The intensification (2) and sustainable intensification (3) scenarios are presented together, because both scenarios have the same productivity assumptions and they only differ in terms of of natural resource efficiencies. Thus, the implications for agricultural markets are the same under both scenarios.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4305321&req=5

pone.0116733.g001: World food price changes under different scenarios.(a): World price deviations in percent compared to BAU (1) in year 2050; (b): World price changes in percent within each scenario from 2010 to 2050. BAU refers to the Business-as-Usual scenario. Scenarios are described in Table 1. The intensification (2) and sustainable intensification (3) scenarios are presented together, because both scenarios have the same productivity assumptions and they only differ in terms of of natural resource efficiencies. Thus, the implications for agricultural markets are the same under both scenarios.

Mentions: Fig. 1a shows the percent change in world prices of each scenario from the BAU (1) price level in 2050. From “BAU liberal” (1a) it is clear that trade liberalization itself has the strongest effect on prices. This is due, firstly, because liberalization is implemented globally, and secondly changes in yield, livestock numbers and area growth rates are only assumed for LAC. If additional productivity improvements were implemented globally, the effects on world production, and in turn on prices, would likely be much more pronounced. In Fig. 1b we see that real world prices will increase in all scenarios between 2010 and 2050, with the steepest increases for almost all products under BAU (1). One exception is sugar whose price would increase more under all alternative scenarios than under BAU (1). Sugar is one of the world’s most highly protected agricultural commodities [54], thus reducing market distortions leads to shifts in production and consumption, and consequently to higher world prices. Intensifying production of sugarcane or closing yield gaps (scenarios (2/3/4)) can attenuate this effect, while extensification (scenario 5) further exacerbates pressure on sugar prices. In contrast to sugar, trade liberalization (scenario 1a) has price reducing effects for the other six crops and beef. This also holds for soybean prices. However, the price increase of soybeans between 2010 and 2050 cannot be reduced through extensification (scenario 5), or intensification (scenarios 2/3) or closing yield gaps (scenario 4). The extensification scenario (5) assumes 60% slower yield growth rates due to lower agricultural inputs which cannot be compensated by the 15% accelerated rainfed area growth. The intensification scenarios (2/3) and, to a much lesser extent, the closing yield gaps scenario (4), assume accelerated yield growth rates, but no further exogenous rainfed area growth. Since soybeans are mostly produced under rainfed conditions, the assumed zero future rainfed area growth leads to higher world prices compared to a situation with faster area growth. Thus, to further augment soybean production, trade liberalization, accelerated yield improvements, and allowing for rainfed area expansion seem to be equally important. For all other crops (wheat, maize, sorghum, potatoes, rice) the intensification scenarios (2/3), and for potatoes the closing yield gaps scenario (4), reinforce the price reducing effect of trade liberalization. On the contrary, allowing for more rainfed area growth, but reducing productivity growth (scenario 5) does not show positive effects. In general, the yield gaps scenario (4) has rather limited production effects, because for most crops (except for potatoes), many areas in LAC are already among the world’s high-yield areas.


The role of Latin America's land and water resources for global food security: environmental trade-offs of future food production pathways.

Flachsbarth I, Willaarts B, Xie H, Pitois G, Mueller ND, Ringler C, Garrido A - PLoS ONE (2015)

World food price changes under different scenarios.(a): World price deviations in percent compared to BAU (1) in year 2050; (b): World price changes in percent within each scenario from 2010 to 2050. BAU refers to the Business-as-Usual scenario. Scenarios are described in Table 1. The intensification (2) and sustainable intensification (3) scenarios are presented together, because both scenarios have the same productivity assumptions and they only differ in terms of of natural resource efficiencies. Thus, the implications for agricultural markets are the same under both scenarios.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4305321&req=5

pone.0116733.g001: World food price changes under different scenarios.(a): World price deviations in percent compared to BAU (1) in year 2050; (b): World price changes in percent within each scenario from 2010 to 2050. BAU refers to the Business-as-Usual scenario. Scenarios are described in Table 1. The intensification (2) and sustainable intensification (3) scenarios are presented together, because both scenarios have the same productivity assumptions and they only differ in terms of of natural resource efficiencies. Thus, the implications for agricultural markets are the same under both scenarios.
Mentions: Fig. 1a shows the percent change in world prices of each scenario from the BAU (1) price level in 2050. From “BAU liberal” (1a) it is clear that trade liberalization itself has the strongest effect on prices. This is due, firstly, because liberalization is implemented globally, and secondly changes in yield, livestock numbers and area growth rates are only assumed for LAC. If additional productivity improvements were implemented globally, the effects on world production, and in turn on prices, would likely be much more pronounced. In Fig. 1b we see that real world prices will increase in all scenarios between 2010 and 2050, with the steepest increases for almost all products under BAU (1). One exception is sugar whose price would increase more under all alternative scenarios than under BAU (1). Sugar is one of the world’s most highly protected agricultural commodities [54], thus reducing market distortions leads to shifts in production and consumption, and consequently to higher world prices. Intensifying production of sugarcane or closing yield gaps (scenarios (2/3/4)) can attenuate this effect, while extensification (scenario 5) further exacerbates pressure on sugar prices. In contrast to sugar, trade liberalization (scenario 1a) has price reducing effects for the other six crops and beef. This also holds for soybean prices. However, the price increase of soybeans between 2010 and 2050 cannot be reduced through extensification (scenario 5), or intensification (scenarios 2/3) or closing yield gaps (scenario 4). The extensification scenario (5) assumes 60% slower yield growth rates due to lower agricultural inputs which cannot be compensated by the 15% accelerated rainfed area growth. The intensification scenarios (2/3) and, to a much lesser extent, the closing yield gaps scenario (4), assume accelerated yield growth rates, but no further exogenous rainfed area growth. Since soybeans are mostly produced under rainfed conditions, the assumed zero future rainfed area growth leads to higher world prices compared to a situation with faster area growth. Thus, to further augment soybean production, trade liberalization, accelerated yield improvements, and allowing for rainfed area expansion seem to be equally important. For all other crops (wheat, maize, sorghum, potatoes, rice) the intensification scenarios (2/3), and for potatoes the closing yield gaps scenario (4), reinforce the price reducing effect of trade liberalization. On the contrary, allowing for more rainfed area growth, but reducing productivity growth (scenario 5) does not show positive effects. In general, the yield gaps scenario (4) has rather limited production effects, because for most crops (except for potatoes), many areas in LAC are already among the world’s high-yield areas.

Bottom Line: Doing so without compromising environmental integrity is an even greater challenge.Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view.Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.

View Article: PubMed Central - PubMed

Affiliation: Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Department of Agricultural Economics and Social Sciences, Universidad Politécnica de Madrid, Madrid, Spain; Water Observatory, Botin Foundation, Madrid, Spain.

ABSTRACT
One of humanity's major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC's agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)-a global dynamic partial equilibrium model of the agricultural sector-to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.

Show MeSH