Limits...
Assessment of brain midline shift using sonography in neurosurgical ICU patients.

Motuel J, Biette I, Srairi M, Mrozek S, Kurrek MM, Chaynes P, Cognard C, Fourcade O, Geeraerts T - Crit Care (2014)

Bottom Line: CT MLS was measured as the difference between the ideal midline and the septum pellucidum.The bias was 0.09 cm and the limits of agreements were 1.10 and -0.92 cm.The area under the ROC curve for detecting a significant MLS with TCS was 0.86 (95% CI = 0.74 to 0.94), and, using 0.35 cm as a cut-off, the sensitivity was 84.2%, the specificity 84.8% and the positive likelihood ratio was 5.56.

View Article: PubMed Central - PubMed

Affiliation: Anesthesiology and Critical Care Department, Equipe d'accueil "Modélisation de l'agression tissulaire et nociceptive", University Hospital of Toulouse, University Toulouse 3 Paul Sabatier, Toulouse, France. motuel.j@chu-toulouse.fr.

ABSTRACT

Introduction: Brain midline shift (MLS) is a life-threatening condition that requires urgent diagnosis and treatment. We aimed to validate bedside assessment of MLS with Transcranial Sonography (TCS) in neurosurgical ICU patients by comparing it to CT.

Methods: In this prospective single centre study, patients who underwent a head CT were included and a concomitant TCS performed. TCS MLS was determined by measuring the difference between the distance from skull to the third ventricle on both sides, using a 2 to 4 MHz probe through the temporal window. CT MLS was measured as the difference between the ideal midline and the septum pellucidum. A significant MLS was defined on head CT as > 0.5 cm.

Results: A total of 52 neurosurgical ICU patients were included. The MLS (mean ± SD) was 0.32 ± 0.36 cm using TCS and 0.47 ± 0.67 cm using CT. The Pearson's correlation coefficient (r(2)) between TCS and CT scan was 0.65 (P < 0.001). The bias was 0.09 cm and the limits of agreements were 1.10 and -0.92 cm. The area under the ROC curve for detecting a significant MLS with TCS was 0.86 (95% CI = 0.74 to 0.94), and, using 0.35 cm as a cut-off, the sensitivity was 84.2%, the specificity 84.8% and the positive likelihood ratio was 5.56.

Conclusions: This study suggests that TCS could detect MLS with reasonable accuracy in neurosurgical ICU patients and that it could serve as a bedside tool to facilitate early diagnosis and treatment for patients with a significant intracranial mass effect.

Show MeSH

Related in: MedlinePlus

Correlation between sonography and CT method 1 for MLS assessment. CT, computed tomography; MLS, midline shift.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4305234&req=5

Fig3: Correlation between sonography and CT method 1 for MLS assessment. CT, computed tomography; MLS, midline shift.

Mentions: The correlation coefficient (r2) between TCS and CT scan was 0.58 with method 1 (P <0.001, Figure 3) and 0.65 with method 2 (P <0.001, Figure 4). The limits of agreements for MLS measurements with TCS and the two CT methods are presented in the Bland and Altman plots, showing a bias of 0.01 cm and limits of agreement from 0.90 to -0.89 cm for TCS and CT method 1 (with five measures – that is, 9% - outside the limits of agreement; Figure 5) and a bias of 0.09 cm and limits of agreement from 1.10 to -0.92 cm for TCS and CT method 2 (also with five measures – that is, 9% - outside the limits of agreement; Figure 6). As several conditions could have affected the agreement between TCS and CT (method 2), a subgroup analysis was performed for the patients who had undergone a decompressive craniectomy or who had a subcutaneous hematoma. The results are presented in the Table 4.Figure 3


Assessment of brain midline shift using sonography in neurosurgical ICU patients.

Motuel J, Biette I, Srairi M, Mrozek S, Kurrek MM, Chaynes P, Cognard C, Fourcade O, Geeraerts T - Crit Care (2014)

Correlation between sonography and CT method 1 for MLS assessment. CT, computed tomography; MLS, midline shift.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4305234&req=5

Fig3: Correlation between sonography and CT method 1 for MLS assessment. CT, computed tomography; MLS, midline shift.
Mentions: The correlation coefficient (r2) between TCS and CT scan was 0.58 with method 1 (P <0.001, Figure 3) and 0.65 with method 2 (P <0.001, Figure 4). The limits of agreements for MLS measurements with TCS and the two CT methods are presented in the Bland and Altman plots, showing a bias of 0.01 cm and limits of agreement from 0.90 to -0.89 cm for TCS and CT method 1 (with five measures – that is, 9% - outside the limits of agreement; Figure 5) and a bias of 0.09 cm and limits of agreement from 1.10 to -0.92 cm for TCS and CT method 2 (also with five measures – that is, 9% - outside the limits of agreement; Figure 6). As several conditions could have affected the agreement between TCS and CT (method 2), a subgroup analysis was performed for the patients who had undergone a decompressive craniectomy or who had a subcutaneous hematoma. The results are presented in the Table 4.Figure 3

Bottom Line: CT MLS was measured as the difference between the ideal midline and the septum pellucidum.The bias was 0.09 cm and the limits of agreements were 1.10 and -0.92 cm.The area under the ROC curve for detecting a significant MLS with TCS was 0.86 (95% CI = 0.74 to 0.94), and, using 0.35 cm as a cut-off, the sensitivity was 84.2%, the specificity 84.8% and the positive likelihood ratio was 5.56.

View Article: PubMed Central - PubMed

Affiliation: Anesthesiology and Critical Care Department, Equipe d'accueil "Modélisation de l'agression tissulaire et nociceptive", University Hospital of Toulouse, University Toulouse 3 Paul Sabatier, Toulouse, France. motuel.j@chu-toulouse.fr.

ABSTRACT

Introduction: Brain midline shift (MLS) is a life-threatening condition that requires urgent diagnosis and treatment. We aimed to validate bedside assessment of MLS with Transcranial Sonography (TCS) in neurosurgical ICU patients by comparing it to CT.

Methods: In this prospective single centre study, patients who underwent a head CT were included and a concomitant TCS performed. TCS MLS was determined by measuring the difference between the distance from skull to the third ventricle on both sides, using a 2 to 4 MHz probe through the temporal window. CT MLS was measured as the difference between the ideal midline and the septum pellucidum. A significant MLS was defined on head CT as > 0.5 cm.

Results: A total of 52 neurosurgical ICU patients were included. The MLS (mean ± SD) was 0.32 ± 0.36 cm using TCS and 0.47 ± 0.67 cm using CT. The Pearson's correlation coefficient (r(2)) between TCS and CT scan was 0.65 (P < 0.001). The bias was 0.09 cm and the limits of agreements were 1.10 and -0.92 cm. The area under the ROC curve for detecting a significant MLS with TCS was 0.86 (95% CI = 0.74 to 0.94), and, using 0.35 cm as a cut-off, the sensitivity was 84.2%, the specificity 84.8% and the positive likelihood ratio was 5.56.

Conclusions: This study suggests that TCS could detect MLS with reasonable accuracy in neurosurgical ICU patients and that it could serve as a bedside tool to facilitate early diagnosis and treatment for patients with a significant intracranial mass effect.

Show MeSH
Related in: MedlinePlus