Limits...
Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat.

Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B, Lemmens M, Hametner C, Fröhlich J, Adam G, Krska R, Schuhmacher R - Anal Bioanal Chem (2014)

Bottom Line: In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight).These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON.The results demonstrate that both DON-sulfates can be regarded as detoxification products.

View Article: PubMed Central - PubMed

Affiliation: Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria, benedikt.warth@boku.ac.at.

ABSTRACT
We report the identification of deoxynivalenol-3-sulfate and deoxynivalenol-15-sulfate as two novel metabolites of the trichothecene mycotoxin deoxynivalenol in wheat. Wheat ears which were either artificially infected with Fusarium graminearum or directly treated with the major Fusarium toxin deoxynivalenol (DON) were sampled 96 h after treatment. Reference standards, which have been chemically synthesized and confirmed by NMR, were used to establish a liquid chromatography-electrospray ionization (LC-ESI)-MS/MS-based "dilute and shoot" method for the detection, unambiguous identification, and quantification of both sulfate conjugates in wheat extracts. Using this approach, detection limits of 0.003 mg/kg for deoxynivalenol-3-sulfate and 0.002 mg/kg for deoxynivalenol-15-sulfate were achieved. Matrix-matched calibration was used for the quantification of DON-sulfates in the investigated samples. In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight). In Fusarium-infected wheat samples, DON-3-sulfate was the only detected sulfate conjugate (range 0.022-0.059 mg/kg fresh weight). These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON. In order to test whether sulfation is a detoxification reaction in planta, we determined the ability of the sulfated DON derivatives to inhibit in vitro protein synthesis of wheat ribosomes. The results demonstrate that both DON-sulfates can be regarded as detoxification products. DON-15-sulfate was about 44× less inhibitory than the native toxin, and no toxicity was observed for DON-3-sulfate in the tested range.

Show MeSH

Related in: MedlinePlus

ᅟ
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4305104&req=5

Figa:


Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat.

Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B, Lemmens M, Hametner C, Fröhlich J, Adam G, Krska R, Schuhmacher R - Anal Bioanal Chem (2014)

ᅟ
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4305104&req=5

Figa:
Bottom Line: In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight).These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON.The results demonstrate that both DON-sulfates can be regarded as detoxification products.

View Article: PubMed Central - PubMed

Affiliation: Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria, benedikt.warth@boku.ac.at.

ABSTRACT
We report the identification of deoxynivalenol-3-sulfate and deoxynivalenol-15-sulfate as two novel metabolites of the trichothecene mycotoxin deoxynivalenol in wheat. Wheat ears which were either artificially infected with Fusarium graminearum or directly treated with the major Fusarium toxin deoxynivalenol (DON) were sampled 96 h after treatment. Reference standards, which have been chemically synthesized and confirmed by NMR, were used to establish a liquid chromatography-electrospray ionization (LC-ESI)-MS/MS-based "dilute and shoot" method for the detection, unambiguous identification, and quantification of both sulfate conjugates in wheat extracts. Using this approach, detection limits of 0.003 mg/kg for deoxynivalenol-3-sulfate and 0.002 mg/kg for deoxynivalenol-15-sulfate were achieved. Matrix-matched calibration was used for the quantification of DON-sulfates in the investigated samples. In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight). In Fusarium-infected wheat samples, DON-3-sulfate was the only detected sulfate conjugate (range 0.022-0.059 mg/kg fresh weight). These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON. In order to test whether sulfation is a detoxification reaction in planta, we determined the ability of the sulfated DON derivatives to inhibit in vitro protein synthesis of wheat ribosomes. The results demonstrate that both DON-sulfates can be regarded as detoxification products. DON-15-sulfate was about 44× less inhibitory than the native toxin, and no toxicity was observed for DON-3-sulfate in the tested range.

Show MeSH
Related in: MedlinePlus