Limits...
Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach.

Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han Y - BMC Plant Biol. (2014)

Bottom Line: This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf.However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves.Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.

View Article: PubMed Central - PubMed

ABSTRACT

Background: Leaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach.

Results: The red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves.

Conclusions: Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.

Show MeSH
Nucleotide sequence of the promoter region ofPpMYB10.4. The positions of SNPs and one 3-bp insertion-deletion are indicated with black arrows and diamond, respectively, while cis-regulatory motifs are highlighted with underlines.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4302523&req=5

Fig8: Nucleotide sequence of the promoter region ofPpMYB10.4. The positions of SNPs and one 3-bp insertion-deletion are indicated with black arrows and diamond, respectively, while cis-regulatory motifs are highlighted with underlines.

Mentions: While there are differences in the expression profile of PpMYB10.4 between red- and green-colored leaves, the coding sequences of PpMYB10.4 are identical between cv. HTY and MTH. Hence, a pair of primers 5′-GGATCTCGCCGCTGTTTCTG-3′ and 5′-TCTCACTCCCGAAGAACTATCCAT-3′ was designed to amplify the promoter genomic regions of PpMYB10.4 in cv. HTY and MTH. The promoter sequences of PpMYB10.4 from cvs. HTY, MTH, and Lovell were aligned and 18 single nucleotide polymorphisms (SNPs) and a 3-bp indel were identified within a 2.06-kb region upstream the PpMYB10.4 start codon (Figure 8). Of these SNPs, seven were located within potential motifs, which were identified using the PLACE program [29]. Among these motifs, one MYBCORE is a potential binding site for MYB-type anthocyanin regulators. However, the T/G SNP in the MYBCORE site is found in the promoter of both ‘HYT’ and ‘MTH’, suggesting that it is not causative for the red leaf coloration. There was a 3-bp insertion found in the promoter of cv. HYT, and the 3-bp indel site was polymorphic. However, the 3-bp insertion was not found in the promoter of cv. MTH and Lovell. To test if the 3-bp indel is related to the red leaf coloration, a pair of primers flanking the 3-bp indel (5′-TTTTACCTTCTCGATCCGGTAT-3′ and 5′-AATTGTTACAAGCATTCTCCAGTT-3′) was then designed to amplify products in diverse peach cultivars, including ‘Datuanmilu’, ‘Gangshanbai’, ‘Huyou002’, ‘Jinyuan’, ‘May Fire’, ‘Nanfangzaohong’, ‘Ruiguangmeiyu’, ‘Wuyuexian’, ‘Xizhuangyihao’, and ‘Zhaoxia’. All these cultivars have green-colored leaves. However, the 3-bp insertion was also found in the promoter of four cultivars, Huyou002, Nanfangzaohong, Xizhuangyihao, and Zhaoxia. This suggests the indel is unlikely to be responsible for leaf red coloration in peach.Figure 8


Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach.

Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han Y - BMC Plant Biol. (2014)

Nucleotide sequence of the promoter region ofPpMYB10.4. The positions of SNPs and one 3-bp insertion-deletion are indicated with black arrows and diamond, respectively, while cis-regulatory motifs are highlighted with underlines.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4302523&req=5

Fig8: Nucleotide sequence of the promoter region ofPpMYB10.4. The positions of SNPs and one 3-bp insertion-deletion are indicated with black arrows and diamond, respectively, while cis-regulatory motifs are highlighted with underlines.
Mentions: While there are differences in the expression profile of PpMYB10.4 between red- and green-colored leaves, the coding sequences of PpMYB10.4 are identical between cv. HTY and MTH. Hence, a pair of primers 5′-GGATCTCGCCGCTGTTTCTG-3′ and 5′-TCTCACTCCCGAAGAACTATCCAT-3′ was designed to amplify the promoter genomic regions of PpMYB10.4 in cv. HTY and MTH. The promoter sequences of PpMYB10.4 from cvs. HTY, MTH, and Lovell were aligned and 18 single nucleotide polymorphisms (SNPs) and a 3-bp indel were identified within a 2.06-kb region upstream the PpMYB10.4 start codon (Figure 8). Of these SNPs, seven were located within potential motifs, which were identified using the PLACE program [29]. Among these motifs, one MYBCORE is a potential binding site for MYB-type anthocyanin regulators. However, the T/G SNP in the MYBCORE site is found in the promoter of both ‘HYT’ and ‘MTH’, suggesting that it is not causative for the red leaf coloration. There was a 3-bp insertion found in the promoter of cv. HYT, and the 3-bp indel site was polymorphic. However, the 3-bp insertion was not found in the promoter of cv. MTH and Lovell. To test if the 3-bp indel is related to the red leaf coloration, a pair of primers flanking the 3-bp indel (5′-TTTTACCTTCTCGATCCGGTAT-3′ and 5′-AATTGTTACAAGCATTCTCCAGTT-3′) was then designed to amplify products in diverse peach cultivars, including ‘Datuanmilu’, ‘Gangshanbai’, ‘Huyou002’, ‘Jinyuan’, ‘May Fire’, ‘Nanfangzaohong’, ‘Ruiguangmeiyu’, ‘Wuyuexian’, ‘Xizhuangyihao’, and ‘Zhaoxia’. All these cultivars have green-colored leaves. However, the 3-bp insertion was also found in the promoter of four cultivars, Huyou002, Nanfangzaohong, Xizhuangyihao, and Zhaoxia. This suggests the indel is unlikely to be responsible for leaf red coloration in peach.Figure 8

Bottom Line: This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf.However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves.Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.

View Article: PubMed Central - PubMed

ABSTRACT

Background: Leaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach.

Results: The red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves.

Conclusions: Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.

Show MeSH