Limits...
Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

Edmondson JL, Davies ZG, Gaston KJ, Leake JR - J Appl Ecol (2014)

Bottom Line: Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown.This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning.Given the involvement of over 800 million people in urban agriculture globally, and its important contribution to food security, our findings suggest that to better protect soil functions, local, national and international urban planning and policy making should promote more urban own-growing in preference to further intensification of conventional agriculture to meet increasing food demand.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK.

ABSTRACT

Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the involvement of over 800 million people in urban agriculture globally, and its important contribution to food security, our findings suggest that to better protect soil functions, local, national and international urban planning and policy making should promote more urban own-growing in preference to further intensification of conventional agriculture to meet increasing food demand.

No MeSH data available.


Related in: MedlinePlus

(a) The geographical location of the East Midlands within England and our study city, Leicester, and (b) the position of allotments within Leicester. Square symbols represent allotment sites sampled; circular symbols are unvisited allotment sites.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4301088&req=5

fig01: (a) The geographical location of the East Midlands within England and our study city, Leicester, and (b) the position of allotments within Leicester. Square symbols represent allotment sites sampled; circular symbols are unvisited allotment sites.

Mentions: Our study focussed on Leicester, a mid-sized UK city in the East Midlands of England (52°38′N, 1°08W), covering an area of c. 73 km2 (defined by the unitary authority boundary), with a human population of c. 330,000 (Leicester City Council 2013; Fig.1a). The region experiences a temperate climate, receiving 606 mm of precipitation annually and average annual daily minimum and maximum temperatures of 5·8 and 13·5 °C, respectively (Met Office 2009). More than 75% of land in the East Midlands is agricultural, of which arable farming is dominant (Rural Business Research 2012). Soils within the city are deep clays, deep loam and seasonally wet deep clays and loam, according to the National Soil Map for England and Wales produced by Cranfield University. The main soil series in the city and its agricultural hinterland are Hanslope, Whimple, Salop, Beccles 3, Ragdale and Fladbury 1.


Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

Edmondson JL, Davies ZG, Gaston KJ, Leake JR - J Appl Ecol (2014)

(a) The geographical location of the East Midlands within England and our study city, Leicester, and (b) the position of allotments within Leicester. Square symbols represent allotment sites sampled; circular symbols are unvisited allotment sites.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4301088&req=5

fig01: (a) The geographical location of the East Midlands within England and our study city, Leicester, and (b) the position of allotments within Leicester. Square symbols represent allotment sites sampled; circular symbols are unvisited allotment sites.
Mentions: Our study focussed on Leicester, a mid-sized UK city in the East Midlands of England (52°38′N, 1°08W), covering an area of c. 73 km2 (defined by the unitary authority boundary), with a human population of c. 330,000 (Leicester City Council 2013; Fig.1a). The region experiences a temperate climate, receiving 606 mm of precipitation annually and average annual daily minimum and maximum temperatures of 5·8 and 13·5 °C, respectively (Met Office 2009). More than 75% of land in the East Midlands is agricultural, of which arable farming is dominant (Rural Business Research 2012). Soils within the city are deep clays, deep loam and seasonally wet deep clays and loam, according to the National Soil Map for England and Wales produced by Cranfield University. The main soil series in the city and its agricultural hinterland are Hanslope, Whimple, Salop, Beccles 3, Ragdale and Fladbury 1.

Bottom Line: Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown.This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning.Given the involvement of over 800 million people in urban agriculture globally, and its important contribution to food security, our findings suggest that to better protect soil functions, local, national and international urban planning and policy making should promote more urban own-growing in preference to further intensification of conventional agriculture to meet increasing food demand.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK.

ABSTRACT

Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the involvement of over 800 million people in urban agriculture globally, and its important contribution to food security, our findings suggest that to better protect soil functions, local, national and international urban planning and policy making should promote more urban own-growing in preference to further intensification of conventional agriculture to meet increasing food demand.

No MeSH data available.


Related in: MedlinePlus