Limits...
Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model.

Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, Anim JT, Oriowo MA, Memon A - Indian J Urol (2015 Jan-Mar)

Bottom Line: Using standard techniques, the following parameters were compared between the three groups of experimental animals at the end of 4 weeks: (a) Serum zinc, magnesium (Mg), copper (Cu), selenium (Se) and cadmium (Cd), (b) serum sex hormones, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPX), (c) interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), Bcl-2, Bax and caspase-3 expression in the testes, (d) assessment of apoptosis of testicular cells using electron microscopy and (e) testicular volume and histology using the orchidometer and Johnsen score, respectively.The zinc deficient group showed a reduction of testicular volume, serum concentrations of Zn, Cu, Se, Mg, SOD, GPX, IL-4, Bcl-2 and testosterone (P < 0.05), as well as increased levels of serum Cd, MDA and tissue TNF-α, Bax, caspase-3 and apoptosis of the germ cells (P < 0.05) compared with control and zinc supplementation groups.These findings suggest that zinc has a role in male reproduction.

View Article: PubMed Central - PubMed

Affiliation: Department of Obstetrics and Gynaecology, Faculty of Medicine, Kuwait University, Kuwait.

ABSTRACT

Introduction: The objective of this study is to investigate the molecular mechanisms underlying the effects of zinc deficiency on spermatogenesis in the Sprague-Dawley (SD) rat.

Materials and methods: Three groups of eight adult male SD rats were maintained for 4 weeks on a normal diet as control, zinc deficient diet and zinc deficient diet with zinc supplementation of 28 mg zinc/kg body weight respectively. Using standard techniques, the following parameters were compared between the three groups of experimental animals at the end of 4 weeks: (a) Serum zinc, magnesium (Mg), copper (Cu), selenium (Se) and cadmium (Cd), (b) serum sex hormones, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPX), (c) interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), Bcl-2, Bax and caspase-3 expression in the testes, (d) assessment of apoptosis of testicular cells using electron microscopy and (e) testicular volume and histology using the orchidometer and Johnsen score, respectively.

Results: The zinc deficient group showed a reduction of testicular volume, serum concentrations of Zn, Cu, Se, Mg, SOD, GPX, IL-4, Bcl-2 and testosterone (P < 0.05), as well as increased levels of serum Cd, MDA and tissue TNF-α, Bax, caspase-3 and apoptosis of the germ cells (P < 0.05) compared with control and zinc supplementation groups.

Conclusion: Zinc deficiency is associated with impaired spermatogenesis because of reduced testosterone production, increased oxidative stress and apoptosis. These findings suggest that zinc has a role in male reproduction.

No MeSH data available.


Related in: MedlinePlus

Immunohistochemical staining with Bcl-2, caspase-3 and Bax (×250) of rats fed normal diet (a), zinc deficient diet (b) and zinc supplementation diet (c). These staining reactions show the following: *Intense staining with Bcl-2 of mature spermatozoa *Intense staining with Bax (black) and caspase-3 (red) consistent with increased apoptosis of the early germ cells such as spermatogonia, spermatocytes and spermatids associated with zinc deficiency *intense staining with Bcl-2 of mature spermatozoa in the seminiferous tubule of rats fed with zinc supplementation diet
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4300574&req=5

Figure 2: Immunohistochemical staining with Bcl-2, caspase-3 and Bax (×250) of rats fed normal diet (a), zinc deficient diet (b) and zinc supplementation diet (c). These staining reactions show the following: *Intense staining with Bcl-2 of mature spermatozoa *Intense staining with Bax (black) and caspase-3 (red) consistent with increased apoptosis of the early germ cells such as spermatogonia, spermatocytes and spermatids associated with zinc deficiency *intense staining with Bcl-2 of mature spermatozoa in the seminiferous tubule of rats fed with zinc supplementation diet

Mentions: Table 4 and Figure 2 show the immunohistochemical staining for Bcl-2, Bax, caspase-3 for the 3 groups of animals. There was increased expression of Bax and caspase-3 in the zinc deficient group of rats compared to control or zinc supplementation group of rats. Caspase-3 activity was reduced by about 50% in the zinc supplementation group compared with control group, while it was increased by about 100% in zinc deficient group compared with control group (P < 0.05). Bcl-2 was highly expressed in the zinc supplementation and the control groups, but least expressed in the zinc deficient group. Figure 2 shows immunohistochemical staining of the testis. Figure 2a shows intense staining with Bcl-2 in mature spermatozoa associated with normal zinc status and with zinc supplementation as shown on Figure 2c, while Figure 2b revealed marked staining with Bax and caspase-3 in association with zinc deficiency.


Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model.

Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, Anim JT, Oriowo MA, Memon A - Indian J Urol (2015 Jan-Mar)

Immunohistochemical staining with Bcl-2, caspase-3 and Bax (×250) of rats fed normal diet (a), zinc deficient diet (b) and zinc supplementation diet (c). These staining reactions show the following: *Intense staining with Bcl-2 of mature spermatozoa *Intense staining with Bax (black) and caspase-3 (red) consistent with increased apoptosis of the early germ cells such as spermatogonia, spermatocytes and spermatids associated with zinc deficiency *intense staining with Bcl-2 of mature spermatozoa in the seminiferous tubule of rats fed with zinc supplementation diet
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4300574&req=5

Figure 2: Immunohistochemical staining with Bcl-2, caspase-3 and Bax (×250) of rats fed normal diet (a), zinc deficient diet (b) and zinc supplementation diet (c). These staining reactions show the following: *Intense staining with Bcl-2 of mature spermatozoa *Intense staining with Bax (black) and caspase-3 (red) consistent with increased apoptosis of the early germ cells such as spermatogonia, spermatocytes and spermatids associated with zinc deficiency *intense staining with Bcl-2 of mature spermatozoa in the seminiferous tubule of rats fed with zinc supplementation diet
Mentions: Table 4 and Figure 2 show the immunohistochemical staining for Bcl-2, Bax, caspase-3 for the 3 groups of animals. There was increased expression of Bax and caspase-3 in the zinc deficient group of rats compared to control or zinc supplementation group of rats. Caspase-3 activity was reduced by about 50% in the zinc supplementation group compared with control group, while it was increased by about 100% in zinc deficient group compared with control group (P < 0.05). Bcl-2 was highly expressed in the zinc supplementation and the control groups, but least expressed in the zinc deficient group. Figure 2 shows immunohistochemical staining of the testis. Figure 2a shows intense staining with Bcl-2 in mature spermatozoa associated with normal zinc status and with zinc supplementation as shown on Figure 2c, while Figure 2b revealed marked staining with Bax and caspase-3 in association with zinc deficiency.

Bottom Line: Using standard techniques, the following parameters were compared between the three groups of experimental animals at the end of 4 weeks: (a) Serum zinc, magnesium (Mg), copper (Cu), selenium (Se) and cadmium (Cd), (b) serum sex hormones, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPX), (c) interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), Bcl-2, Bax and caspase-3 expression in the testes, (d) assessment of apoptosis of testicular cells using electron microscopy and (e) testicular volume and histology using the orchidometer and Johnsen score, respectively.The zinc deficient group showed a reduction of testicular volume, serum concentrations of Zn, Cu, Se, Mg, SOD, GPX, IL-4, Bcl-2 and testosterone (P < 0.05), as well as increased levels of serum Cd, MDA and tissue TNF-α, Bax, caspase-3 and apoptosis of the germ cells (P < 0.05) compared with control and zinc supplementation groups.These findings suggest that zinc has a role in male reproduction.

View Article: PubMed Central - PubMed

Affiliation: Department of Obstetrics and Gynaecology, Faculty of Medicine, Kuwait University, Kuwait.

ABSTRACT

Introduction: The objective of this study is to investigate the molecular mechanisms underlying the effects of zinc deficiency on spermatogenesis in the Sprague-Dawley (SD) rat.

Materials and methods: Three groups of eight adult male SD rats were maintained for 4 weeks on a normal diet as control, zinc deficient diet and zinc deficient diet with zinc supplementation of 28 mg zinc/kg body weight respectively. Using standard techniques, the following parameters were compared between the three groups of experimental animals at the end of 4 weeks: (a) Serum zinc, magnesium (Mg), copper (Cu), selenium (Se) and cadmium (Cd), (b) serum sex hormones, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPX), (c) interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), Bcl-2, Bax and caspase-3 expression in the testes, (d) assessment of apoptosis of testicular cells using electron microscopy and (e) testicular volume and histology using the orchidometer and Johnsen score, respectively.

Results: The zinc deficient group showed a reduction of testicular volume, serum concentrations of Zn, Cu, Se, Mg, SOD, GPX, IL-4, Bcl-2 and testosterone (P < 0.05), as well as increased levels of serum Cd, MDA and tissue TNF-α, Bax, caspase-3 and apoptosis of the germ cells (P < 0.05) compared with control and zinc supplementation groups.

Conclusion: Zinc deficiency is associated with impaired spermatogenesis because of reduced testosterone production, increased oxidative stress and apoptosis. These findings suggest that zinc has a role in male reproduction.

No MeSH data available.


Related in: MedlinePlus