Limits...
Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy.

Dzido G, Markowski P, Małachowska-Jutsz A, Prusik K, Jarzębski AB - J Nanopart Res (2015)

Bottom Line: Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity.Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10-20 nm) spherical silver nanoparticles within a few seconds.The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.

ABSTRACT

Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm(3)/h, to give 3-24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10-20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer-Dinegar model of NPs' formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

No MeSH data available.


Related in: MedlinePlus

Characteristics of Ag NPs fabricated in continuous flow process (T27): a TEM image, b HRTEM enlargement, c corresponding SAED pattern, d PSD obtained by counting 780 particles
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4300398&req=5

Fig9: Characteristics of Ag NPs fabricated in continuous flow process (T27): a TEM image, b HRTEM enlargement, c corresponding SAED pattern, d PSD obtained by counting 780 particles

Mentions: TEM image observations also confirmed that application of 1,4-butanediol results in the synthesis of very fine particles (T27, Fig. 9), notably smaller than those obtained using EG, in accord with DLS-based measurements, yet with significantly wider size distribution, also in agreement with the predictions of DLS method (Table 1).Fig. 9


Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy.

Dzido G, Markowski P, Małachowska-Jutsz A, Prusik K, Jarzębski AB - J Nanopart Res (2015)

Characteristics of Ag NPs fabricated in continuous flow process (T27): a TEM image, b HRTEM enlargement, c corresponding SAED pattern, d PSD obtained by counting 780 particles
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4300398&req=5

Fig9: Characteristics of Ag NPs fabricated in continuous flow process (T27): a TEM image, b HRTEM enlargement, c corresponding SAED pattern, d PSD obtained by counting 780 particles
Mentions: TEM image observations also confirmed that application of 1,4-butanediol results in the synthesis of very fine particles (T27, Fig. 9), notably smaller than those obtained using EG, in accord with DLS-based measurements, yet with significantly wider size distribution, also in agreement with the predictions of DLS method (Table 1).Fig. 9

Bottom Line: Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity.Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10-20 nm) spherical silver nanoparticles within a few seconds.The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.

ABSTRACT

Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm(3)/h, to give 3-24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10-20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer-Dinegar model of NPs' formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

No MeSH data available.


Related in: MedlinePlus