Limits...
Deep sequencing of the murine olfactory receptor neuron transcriptome.

Kanageswaran N, Demond M, Nagel M, Schreiner BS, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G - PLoS ONE (2015)

Bottom Line: In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed.To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues.We also identified other previously undescribed membrane proteins as potential new players in olfaction.

View Article: PubMed Central - PubMed

Affiliation: Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany.

ABSTRACT
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

Show MeSH

Related in: MedlinePlus

Expression patterns and ranking of genes coding for non-GPCR membrane proteins.A. Heatmap showing the ranking of the 30 most highly expressed genes in the FACS-sorted ORNs. B. Heatmap showing the ranking of the 30 most highly expressed genes that were specifically enriched in ORNs according to criteria that their FPKMs > 1 and their expression level in ORNs was at least 5x greater than that in non-olfactory tissue (brain, liver, muscle and testes).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4295871&req=5

pone.0113170.g009: Expression patterns and ranking of genes coding for non-GPCR membrane proteins.A. Heatmap showing the ranking of the 30 most highly expressed genes in the FACS-sorted ORNs. B. Heatmap showing the ranking of the 30 most highly expressed genes that were specifically enriched in ORNs according to criteria that their FPKMs > 1 and their expression level in ORNs was at least 5x greater than that in non-olfactory tissue (brain, liver, muscle and testes).

Mentions: This ranking showed that, of the 1,000 most highly expressed genes, 20% were genes that code for membrane proteins. We found the following known components of basic signaling among the 30 most highly expressed membrane protein genes: ACIII, Cnga2, Cnga4 Ano2, and Rtp1, which is involved in OR trafficking [21]. In addition to these genes that are known to have roles in basic signaling, we found Stoml3, Stom, Umodl1, Plekhb1, Atp1a1, Nsg1, Tmbim6, Atp1b1, Aplp2, Aplp1, Tmem66, Sgpl1, Sec14l3, Kcnc4, Clstn1, Rtn1, Ormdl3, Flrt1, Mslnl, Igsf8, Ncam1, Olfm1, Acsl6 and Faim2 (Fig. 9).


Deep sequencing of the murine olfactory receptor neuron transcriptome.

Kanageswaran N, Demond M, Nagel M, Schreiner BS, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G - PLoS ONE (2015)

Expression patterns and ranking of genes coding for non-GPCR membrane proteins.A. Heatmap showing the ranking of the 30 most highly expressed genes in the FACS-sorted ORNs. B. Heatmap showing the ranking of the 30 most highly expressed genes that were specifically enriched in ORNs according to criteria that their FPKMs > 1 and their expression level in ORNs was at least 5x greater than that in non-olfactory tissue (brain, liver, muscle and testes).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4295871&req=5

pone.0113170.g009: Expression patterns and ranking of genes coding for non-GPCR membrane proteins.A. Heatmap showing the ranking of the 30 most highly expressed genes in the FACS-sorted ORNs. B. Heatmap showing the ranking of the 30 most highly expressed genes that were specifically enriched in ORNs according to criteria that their FPKMs > 1 and their expression level in ORNs was at least 5x greater than that in non-olfactory tissue (brain, liver, muscle and testes).
Mentions: This ranking showed that, of the 1,000 most highly expressed genes, 20% were genes that code for membrane proteins. We found the following known components of basic signaling among the 30 most highly expressed membrane protein genes: ACIII, Cnga2, Cnga4 Ano2, and Rtp1, which is involved in OR trafficking [21]. In addition to these genes that are known to have roles in basic signaling, we found Stoml3, Stom, Umodl1, Plekhb1, Atp1a1, Nsg1, Tmbim6, Atp1b1, Aplp2, Aplp1, Tmem66, Sgpl1, Sec14l3, Kcnc4, Clstn1, Rtn1, Ormdl3, Flrt1, Mslnl, Igsf8, Ncam1, Olfm1, Acsl6 and Faim2 (Fig. 9).

Bottom Line: In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed.To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues.We also identified other previously undescribed membrane proteins as potential new players in olfaction.

View Article: PubMed Central - PubMed

Affiliation: Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany.

ABSTRACT
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

Show MeSH
Related in: MedlinePlus