Limits...
Deep sequencing of the murine olfactory receptor neuron transcriptome.

Kanageswaran N, Demond M, Nagel M, Schreiner BS, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G - PLoS ONE (2015)

Bottom Line: In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed.To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues.The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

View Article: PubMed Central - PubMed

Affiliation: Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany.

ABSTRACT
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

Show MeSH
Differences in the gene expression patterns between ORNs and the OE.Comparison of FACS-sorted ORNs and the OE (CD1 OE both sexes; C57BL6 female OE) revealed that genes that are known to be expressed in mature ORNs were expressed in ORNs at levels that were about two to three-fold higher those of the OE. Genes specific for non-neuronal cell types were expressed at levels that were at least two to 119-fold greater in the OE.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4295871&req=5

pone.0113170.g005: Differences in the gene expression patterns between ORNs and the OE.Comparison of FACS-sorted ORNs and the OE (CD1 OE both sexes; C57BL6 female OE) revealed that genes that are known to be expressed in mature ORNs were expressed in ORNs at levels that were about two to three-fold higher those of the OE. Genes specific for non-neuronal cell types were expressed at levels that were at least two to 119-fold greater in the OE.

Mentions: The OE is composed of several different cell types. Next to the ORNs are sustentacular cells, basal cells, including globose and horizontal cells, microvillar cells, and cells lining the Bowman’s glands and duct are found in the OE [84, 85]. Accordingly, the differential expression pattern of the OE compared to FACS-sorted ORNs revealed a catalog of genes expressed in ORNs and/or other cell types of the OE. To avoid strain specific differences, we only compared the ORN data with C57BL/6J transcriptome data. We found that, in nearly all instances, genes known to be expressed in ORNs had 2–8 times higher FPKM values in sorted ORNs than in the OE, while genes known to be expressed in other cell types of the OE had 2–119-fold higher FPKMs in the OE compared to the sorted ORNs (Fig. 5).


Deep sequencing of the murine olfactory receptor neuron transcriptome.

Kanageswaran N, Demond M, Nagel M, Schreiner BS, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G - PLoS ONE (2015)

Differences in the gene expression patterns between ORNs and the OE.Comparison of FACS-sorted ORNs and the OE (CD1 OE both sexes; C57BL6 female OE) revealed that genes that are known to be expressed in mature ORNs were expressed in ORNs at levels that were about two to three-fold higher those of the OE. Genes specific for non-neuronal cell types were expressed at levels that were at least two to 119-fold greater in the OE.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4295871&req=5

pone.0113170.g005: Differences in the gene expression patterns between ORNs and the OE.Comparison of FACS-sorted ORNs and the OE (CD1 OE both sexes; C57BL6 female OE) revealed that genes that are known to be expressed in mature ORNs were expressed in ORNs at levels that were about two to three-fold higher those of the OE. Genes specific for non-neuronal cell types were expressed at levels that were at least two to 119-fold greater in the OE.
Mentions: The OE is composed of several different cell types. Next to the ORNs are sustentacular cells, basal cells, including globose and horizontal cells, microvillar cells, and cells lining the Bowman’s glands and duct are found in the OE [84, 85]. Accordingly, the differential expression pattern of the OE compared to FACS-sorted ORNs revealed a catalog of genes expressed in ORNs and/or other cell types of the OE. To avoid strain specific differences, we only compared the ORN data with C57BL/6J transcriptome data. We found that, in nearly all instances, genes known to be expressed in ORNs had 2–8 times higher FPKM values in sorted ORNs than in the OE, while genes known to be expressed in other cell types of the OE had 2–119-fold higher FPKMs in the OE compared to the sorted ORNs (Fig. 5).

Bottom Line: In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed.To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues.The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

View Article: PubMed Central - PubMed

Affiliation: Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany.

ABSTRACT
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

Show MeSH