Limits...
A Monte Carlo Study for Photoneutron Dose Estimations around the High-Energy Linacs.

Mohammadi N, Miri-Hakimabad SH, Rafat-Motavalli L - J Biomed Phys Eng (2014)

Bottom Line: The results of dose calculations at the isocenter and maze showed that photoneutron dose decreases as the function of distance from the isocenter and increases with increasing the distance from the entrance maze.It is concluded that the simplified model of linac head is a useful and reliable method in dosimetry calculations.Calculations illustrated that the photoneutron dose is not negligible and duo to its harmful biological effects on body, it should be considered in the treatment plans.

View Article: PubMed Central - PubMed

Affiliation: Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Iran.

ABSTRACT

Background: High-energy linear accelerator (linac) is a valuable tool and the most commonly used device for external beam radiation treatments in cancer patients. In the linac head, high-energy photons with energies above the threshold of (γ,n) interaction produce photoneutrons. These photoneutrons deliver the extra dose to the patients undergoing radiation treatment and increase the risk of secondary cancer.

Objective: In this study, a simplified model of the linac head was simulated and photoneutron dose equivalent was calculated at the isocenter and maze in the sphere detector. In addition, the absorbed and equivalent dose of photoneutron were estimated in the some organs of the phantom.

Methods: The simulations were made using the Monte Carlo code. The ICRP reference adult male voxel phantom was used as the human body model for dosimetry calculations.

Results: The results of dose calculations at the isocenter and maze showed that photoneutron dose decreases as the function of distance from the isocenter and increases with increasing the distance from the entrance maze.

Conclusion: It is concluded that the simplified model of linac head is a useful and reliable method in dosimetry calculations. Calculations illustrated that the photoneutron dose is not negligible and duo to its harmful biological effects on body, it should be considered in the treatment plans.

No MeSH data available.


Related in: MedlinePlus

Photoneutron absorbed doses (mGy/Gy) in brain tumor treatment
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4289520&req=5

Figure 8: Photoneutron absorbed doses (mGy/Gy) in brain tumor treatment

Mentions: Photoneutron absorbed doses of adrenals, brain, gonads, liver, lungs, stomach, thyroid, gall bladder, heart, kidney, pancreas, prostate, spleen, thymus, and eye lens in the case that a simplified model of linac head was located in front of the brain were shown in the figure 8. Relative statistical uncertainties of these calculations were less than 3% except for the eye lenses, which was less than 10%.


A Monte Carlo Study for Photoneutron Dose Estimations around the High-Energy Linacs.

Mohammadi N, Miri-Hakimabad SH, Rafat-Motavalli L - J Biomed Phys Eng (2014)

Photoneutron absorbed doses (mGy/Gy) in brain tumor treatment
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4289520&req=5

Figure 8: Photoneutron absorbed doses (mGy/Gy) in brain tumor treatment
Mentions: Photoneutron absorbed doses of adrenals, brain, gonads, liver, lungs, stomach, thyroid, gall bladder, heart, kidney, pancreas, prostate, spleen, thymus, and eye lens in the case that a simplified model of linac head was located in front of the brain were shown in the figure 8. Relative statistical uncertainties of these calculations were less than 3% except for the eye lenses, which was less than 10%.

Bottom Line: The results of dose calculations at the isocenter and maze showed that photoneutron dose decreases as the function of distance from the isocenter and increases with increasing the distance from the entrance maze.It is concluded that the simplified model of linac head is a useful and reliable method in dosimetry calculations.Calculations illustrated that the photoneutron dose is not negligible and duo to its harmful biological effects on body, it should be considered in the treatment plans.

View Article: PubMed Central - PubMed

Affiliation: Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Iran.

ABSTRACT

Background: High-energy linear accelerator (linac) is a valuable tool and the most commonly used device for external beam radiation treatments in cancer patients. In the linac head, high-energy photons with energies above the threshold of (γ,n) interaction produce photoneutrons. These photoneutrons deliver the extra dose to the patients undergoing radiation treatment and increase the risk of secondary cancer.

Objective: In this study, a simplified model of the linac head was simulated and photoneutron dose equivalent was calculated at the isocenter and maze in the sphere detector. In addition, the absorbed and equivalent dose of photoneutron were estimated in the some organs of the phantom.

Methods: The simulations were made using the Monte Carlo code. The ICRP reference adult male voxel phantom was used as the human body model for dosimetry calculations.

Results: The results of dose calculations at the isocenter and maze showed that photoneutron dose decreases as the function of distance from the isocenter and increases with increasing the distance from the entrance maze.

Conclusion: It is concluded that the simplified model of linac head is a useful and reliable method in dosimetry calculations. Calculations illustrated that the photoneutron dose is not negligible and duo to its harmful biological effects on body, it should be considered in the treatment plans.

No MeSH data available.


Related in: MedlinePlus