Limits...
Technology-Intensified Diabetes Education Study (TIDES) in African Americans with type 2 diabetes: study protocol for a randomized controlled trial.

Williams JS, Lynch CP, Knapp RG, Egede LE - Trials (2014)

Bottom Line: Participants will be followed for 12 months to ascertain the effect of the interventions on glycemic control.Our primary hypothesis is that, among African Americans with poorly controlled T2DM, patients randomized to the TIDES intervention will have significantly greater reduction in glycosylated hemoglobin A1c at 12 months of follow-up compared to the usual-care group.Results from this study will add to the current literature examining how best to deliver diabetes education and skills training and provide important insight into effective strategies to improve metabolic control and hence reduce diabetes complications and mortality rates in African Americans with poorly controlled T2DM.

View Article: PubMed Central - PubMed

Affiliation: Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425, USA. Egedel@musc.edu.

ABSTRACT

Background: Compared to American Whites, African Americans have a higher prevalence of type 2 diabetes mellitus (T2DM), experiencing poorer metabolic control and greater risks for complications and death. Patient-level factors, such as diabetes knowledge, self-management skills, empowerment, and perceived control, account for >90% of the variance observed in outcomes between these racial groups. There is strong evidence that self-management interventions that include telephone-delivered diabetes education and skills training are effective at improving metabolic control in diabetes. Web-based home telemonitoring systems in conjunction with active care management are also effective ways to lower glycosylated hemoglobin A1c values when compared to standard care, and provide feedback to patients; however, there are no studies in African Americans with poorly controlled T2DM that examine the use of technology-based feedback to tailor or augment diabetes education and skills training. This study provides a unique opportunity to address this gap in the literature.

Methods: We describe an ongoing 4-year randomized clinical trial, which will test the efficacy of a technology-intensified diabetes education and skills training (TIDES) intervention in African Americans with poorly controlled T2DM. Two hundred male and female AfricanAmerican participants, 21 years of age or older and with a glycosylated hemoglobin A1c level ≥ 8%, will be randomized into one of two groups for 12 weeks of telephone interventions: (1) TIDES intervention group or (2) a usual-care group. Participants will be followed for 12 months to ascertain the effect of the interventions on glycemic control. Our primary hypothesis is that, among African Americans with poorly controlled T2DM, patients randomized to the TIDES intervention will have significantly greater reduction in glycosylated hemoglobin A1c at 12 months of follow-up compared to the usual-care group.

Discussion: Results from this study will add to the current literature examining how best to deliver diabetes education and skills training and provide important insight into effective strategies to improve metabolic control and hence reduce diabetes complications and mortality rates in African Americans with poorly controlled T2DM.

Trial registration: This study was registered with the National Institutes of Health Clinical Trials Registry on 13 March 2014 (ClinicalTrials.gov identifier# NCT02088658).

Show MeSH

Related in: MedlinePlus

The FORA two-in-one blood glucose and blood pressure device (D20).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4289359&req=5

Fig2: The FORA two-in-one blood glucose and blood pressure device (D20).

Mentions: The FORA system (Fora Care Inc. 893 Patriot Drive, Suite D, Moorpark, CA 93021, USA) is an inexpensive, off-the-shelf, state-of-the-art technology whereby a person/caregiver and a provider can communicate accurately on data needed for self-management of diabetes. The system is comprised of an easy to operate two-in-one blood glucose and blood pressure monitor (Figures 1 and 2) that uploads results to a secure website via a modem. The system provides an easy-to-use operation for users to accomplish two important tests. The measured results can be uploaded to a personal computer or web-based software by using a RS232 cable via a communication device to connect the FORA glucose monitor and web-based FORA TeleHealth System using a phone modem (Figure 3). The provider (in this case a nurse case manager (NCM) or diabetes educator (DE)) can review the glucose and blood pressure readings weekly and use the data to tailor diabetes education and self-care skills training using motivational enhancement techniques to achieve optimal metabolic control.Figure 1


Technology-Intensified Diabetes Education Study (TIDES) in African Americans with type 2 diabetes: study protocol for a randomized controlled trial.

Williams JS, Lynch CP, Knapp RG, Egede LE - Trials (2014)

The FORA two-in-one blood glucose and blood pressure device (D20).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4289359&req=5

Fig2: The FORA two-in-one blood glucose and blood pressure device (D20).
Mentions: The FORA system (Fora Care Inc. 893 Patriot Drive, Suite D, Moorpark, CA 93021, USA) is an inexpensive, off-the-shelf, state-of-the-art technology whereby a person/caregiver and a provider can communicate accurately on data needed for self-management of diabetes. The system is comprised of an easy to operate two-in-one blood glucose and blood pressure monitor (Figures 1 and 2) that uploads results to a secure website via a modem. The system provides an easy-to-use operation for users to accomplish two important tests. The measured results can be uploaded to a personal computer or web-based software by using a RS232 cable via a communication device to connect the FORA glucose monitor and web-based FORA TeleHealth System using a phone modem (Figure 3). The provider (in this case a nurse case manager (NCM) or diabetes educator (DE)) can review the glucose and blood pressure readings weekly and use the data to tailor diabetes education and self-care skills training using motivational enhancement techniques to achieve optimal metabolic control.Figure 1

Bottom Line: Participants will be followed for 12 months to ascertain the effect of the interventions on glycemic control.Our primary hypothesis is that, among African Americans with poorly controlled T2DM, patients randomized to the TIDES intervention will have significantly greater reduction in glycosylated hemoglobin A1c at 12 months of follow-up compared to the usual-care group.Results from this study will add to the current literature examining how best to deliver diabetes education and skills training and provide important insight into effective strategies to improve metabolic control and hence reduce diabetes complications and mortality rates in African Americans with poorly controlled T2DM.

View Article: PubMed Central - PubMed

Affiliation: Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425, USA. Egedel@musc.edu.

ABSTRACT

Background: Compared to American Whites, African Americans have a higher prevalence of type 2 diabetes mellitus (T2DM), experiencing poorer metabolic control and greater risks for complications and death. Patient-level factors, such as diabetes knowledge, self-management skills, empowerment, and perceived control, account for >90% of the variance observed in outcomes between these racial groups. There is strong evidence that self-management interventions that include telephone-delivered diabetes education and skills training are effective at improving metabolic control in diabetes. Web-based home telemonitoring systems in conjunction with active care management are also effective ways to lower glycosylated hemoglobin A1c values when compared to standard care, and provide feedback to patients; however, there are no studies in African Americans with poorly controlled T2DM that examine the use of technology-based feedback to tailor or augment diabetes education and skills training. This study provides a unique opportunity to address this gap in the literature.

Methods: We describe an ongoing 4-year randomized clinical trial, which will test the efficacy of a technology-intensified diabetes education and skills training (TIDES) intervention in African Americans with poorly controlled T2DM. Two hundred male and female AfricanAmerican participants, 21 years of age or older and with a glycosylated hemoglobin A1c level ≥ 8%, will be randomized into one of two groups for 12 weeks of telephone interventions: (1) TIDES intervention group or (2) a usual-care group. Participants will be followed for 12 months to ascertain the effect of the interventions on glycemic control. Our primary hypothesis is that, among African Americans with poorly controlled T2DM, patients randomized to the TIDES intervention will have significantly greater reduction in glycosylated hemoglobin A1c at 12 months of follow-up compared to the usual-care group.

Discussion: Results from this study will add to the current literature examining how best to deliver diabetes education and skills training and provide important insight into effective strategies to improve metabolic control and hence reduce diabetes complications and mortality rates in African Americans with poorly controlled T2DM.

Trial registration: This study was registered with the National Institutes of Health Clinical Trials Registry on 13 March 2014 (ClinicalTrials.gov identifier# NCT02088658).

Show MeSH
Related in: MedlinePlus