Limits...
Robotic pancreaticoduodenectomy in a case of duodenal gastrointestinal stromal tumor.

Parisi A, Desiderio J, Trastulli S, Grassi V, Ricci F, Farinacci F, Cacurri A, Castellani E, Corsi A, Renzi C, Barberini F, D'Andrea V, Santoro A, Cirocchi R - World J Surg Oncol (2014)

Bottom Line: Laparoscopic pancreaticoduodenectomy is rarely performed, and it has not been particularly successful due to its technical complexity.The surgical technique employed in our center to perform a pancreaticoduodenectomy, which was by means of the da Vinci™ robotic system in order to remove a duodenal gastrointestinal stromal tumor, is reported.Robotic technology has improved significantly over the traditional laparoscopic approach, representing an evolution of minimally invasive techniques, allowing procedures to be safely performed that are still considered to be scarcely feasible or reproducible.

View Article: PubMed Central - PubMed

Affiliation: Department of General and Oncologic Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06157, Italy. renzicla@virgilio.it.

ABSTRACT

Background: Laparoscopic pancreaticoduodenectomy is rarely performed, and it has not been particularly successful due to its technical complexity. The objective of this study is to highlight how robotic surgery could improve a minimally invasive approach and to expose the usefulness of robotic surgery even in complex surgical procedures.

Case presentation: The surgical technique employed in our center to perform a pancreaticoduodenectomy, which was by means of the da Vinci™ robotic system in order to remove a duodenal gastrointestinal stromal tumor, is reported.

Conclusions: Robotic technology has improved significantly over the traditional laparoscopic approach, representing an evolution of minimally invasive techniques, allowing procedures to be safely performed that are still considered to be scarcely feasible or reproducible.

Show MeSH

Related in: MedlinePlus

The dissection of the pancreas is performed with robotic Ultracision™.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4289318&req=5

Fig3: The dissection of the pancreas is performed with robotic Ultracision™.

Mentions: A 20-degree anti-Trendelenburg position is preferred, slightly rotated 10 degrees to the left side. Trocars are placed through the umbilicus following a concave curved line. The optical trocar is inserted about 5 cm to the right of the umbilical line. The first robotic trocar is positioned between the midaxillary and the transverse umbilical line, the second robotic trocar between the right axillary line and the transverse umbilical line, and the third robotic trocar in the right hypochondrium. A 12-mm extra-port is located between the umbilicus and the first robotic trocar. A robotic camera is inserted through the periumbilical trocar port. To access the retrocavity of the epiploon, the gastrocolic ligament is opened outside the gastroepiploic arch. The back wall of the stomach is identified. A Kocher maneuver is performed to release the second and the third portion of the duodenum and views of the inferior vena cava and of the left renal vein. The pancreatic isthmus is identified, a retropancreatic tunnel is created between the posterior face of the pancreas and the superior mesenteric vein (SMV). Then, a retrograde cholecystectomy is performed to allow further mobilization of the duodenal-pancreatic block and to identify the course of the main bile duct, which must be sectioned below the confluence of the cystic duct (Figure 1). The course of the gastroduodenal artery is identified and the artery is sectioned Ultracision™ (Figure 2). The duodenum is sectioned 3 cm below the pylorus with a laparoscopic linear stapler. The retro-pancreatic tunnel is completed, and the pancreas is loaded on a tape. The upper and lower edges of the pancreatic isthmus are closed and a pancreatic dissection is performed with the robotic Ultracision™ (Figure 3). After the course of the SMV and the spleno-mesenteric confluence of the portal trunk are identified, a section of the retroportal pancreatic lamina is performed. A pancreaticogastrostomy is performed via a transgastric approach (Figure 4). The anterior wall of the stomach is opened to allow access to the back wall and the residual pancreas is anastomosed with an interrupted suture technique. Finally, the gastric anterior wall is closed. Then, the ligament of Treiz is identified, and a section of the first jejunal loop is performed. The biliary-jejunal anastomosis is confectioned (Figure 5). A minilaparotomy is performed and a Lap Disc™ is positioned; the termino-lateral duodeno-jejunal anastomosis is closed, and the surgical specimen is retrieved. Two intra-abdominal drains are placed. Surgical time was 510 minutes; blood loss was 250 ml. The postoperative course was fast and smooth. No perioperative complication occurred. On the first post-operative day the Pain Visual Analog Scale (VAS) score was 3 [4]. On the second day fluid intake was restored. Digestive function is recovered on day 3, allowing a solid diet. Bowel functions recovery in day 5 led to the removal of the abdominal drains. The patient was discharged on day 9. The Short Form-12 (SF-12) assessment scale [5] showed a quick return to daily activities. The histopathological examination was group 3 GIST, according to the classification by Miettinen [6]. At 18 months after the operation, there was no recurrence of disease or complications.Figure 1


Robotic pancreaticoduodenectomy in a case of duodenal gastrointestinal stromal tumor.

Parisi A, Desiderio J, Trastulli S, Grassi V, Ricci F, Farinacci F, Cacurri A, Castellani E, Corsi A, Renzi C, Barberini F, D'Andrea V, Santoro A, Cirocchi R - World J Surg Oncol (2014)

The dissection of the pancreas is performed with robotic Ultracision™.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4289318&req=5

Fig3: The dissection of the pancreas is performed with robotic Ultracision™.
Mentions: A 20-degree anti-Trendelenburg position is preferred, slightly rotated 10 degrees to the left side. Trocars are placed through the umbilicus following a concave curved line. The optical trocar is inserted about 5 cm to the right of the umbilical line. The first robotic trocar is positioned between the midaxillary and the transverse umbilical line, the second robotic trocar between the right axillary line and the transverse umbilical line, and the third robotic trocar in the right hypochondrium. A 12-mm extra-port is located between the umbilicus and the first robotic trocar. A robotic camera is inserted through the periumbilical trocar port. To access the retrocavity of the epiploon, the gastrocolic ligament is opened outside the gastroepiploic arch. The back wall of the stomach is identified. A Kocher maneuver is performed to release the second and the third portion of the duodenum and views of the inferior vena cava and of the left renal vein. The pancreatic isthmus is identified, a retropancreatic tunnel is created between the posterior face of the pancreas and the superior mesenteric vein (SMV). Then, a retrograde cholecystectomy is performed to allow further mobilization of the duodenal-pancreatic block and to identify the course of the main bile duct, which must be sectioned below the confluence of the cystic duct (Figure 1). The course of the gastroduodenal artery is identified and the artery is sectioned Ultracision™ (Figure 2). The duodenum is sectioned 3 cm below the pylorus with a laparoscopic linear stapler. The retro-pancreatic tunnel is completed, and the pancreas is loaded on a tape. The upper and lower edges of the pancreatic isthmus are closed and a pancreatic dissection is performed with the robotic Ultracision™ (Figure 3). After the course of the SMV and the spleno-mesenteric confluence of the portal trunk are identified, a section of the retroportal pancreatic lamina is performed. A pancreaticogastrostomy is performed via a transgastric approach (Figure 4). The anterior wall of the stomach is opened to allow access to the back wall and the residual pancreas is anastomosed with an interrupted suture technique. Finally, the gastric anterior wall is closed. Then, the ligament of Treiz is identified, and a section of the first jejunal loop is performed. The biliary-jejunal anastomosis is confectioned (Figure 5). A minilaparotomy is performed and a Lap Disc™ is positioned; the termino-lateral duodeno-jejunal anastomosis is closed, and the surgical specimen is retrieved. Two intra-abdominal drains are placed. Surgical time was 510 minutes; blood loss was 250 ml. The postoperative course was fast and smooth. No perioperative complication occurred. On the first post-operative day the Pain Visual Analog Scale (VAS) score was 3 [4]. On the second day fluid intake was restored. Digestive function is recovered on day 3, allowing a solid diet. Bowel functions recovery in day 5 led to the removal of the abdominal drains. The patient was discharged on day 9. The Short Form-12 (SF-12) assessment scale [5] showed a quick return to daily activities. The histopathological examination was group 3 GIST, according to the classification by Miettinen [6]. At 18 months after the operation, there was no recurrence of disease or complications.Figure 1

Bottom Line: Laparoscopic pancreaticoduodenectomy is rarely performed, and it has not been particularly successful due to its technical complexity.The surgical technique employed in our center to perform a pancreaticoduodenectomy, which was by means of the da Vinci™ robotic system in order to remove a duodenal gastrointestinal stromal tumor, is reported.Robotic technology has improved significantly over the traditional laparoscopic approach, representing an evolution of minimally invasive techniques, allowing procedures to be safely performed that are still considered to be scarcely feasible or reproducible.

View Article: PubMed Central - PubMed

Affiliation: Department of General and Oncologic Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06157, Italy. renzicla@virgilio.it.

ABSTRACT

Background: Laparoscopic pancreaticoduodenectomy is rarely performed, and it has not been particularly successful due to its technical complexity. The objective of this study is to highlight how robotic surgery could improve a minimally invasive approach and to expose the usefulness of robotic surgery even in complex surgical procedures.

Case presentation: The surgical technique employed in our center to perform a pancreaticoduodenectomy, which was by means of the da Vinci™ robotic system in order to remove a duodenal gastrointestinal stromal tumor, is reported.

Conclusions: Robotic technology has improved significantly over the traditional laparoscopic approach, representing an evolution of minimally invasive techniques, allowing procedures to be safely performed that are still considered to be scarcely feasible or reproducible.

Show MeSH
Related in: MedlinePlus