Limits...
Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways.

Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R - BMC Genomics (2014)

Bottom Line: Genes associated with nitrogen stress response and two-component systems were found to be enriched.Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy.

View Article: PubMed Central - PubMed

Affiliation: Room No, 115, Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India. ruplal@gmail.com.

ABSTRACT

Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6).

Results: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. Additionally, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.

Conclusion: The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their arrangement with respect to IS6100 and evidence for potential plasmid content elucidate possible evolutionary acquisition mechanisms for this pathway. This study further opens the horizon for selection of bacterial strains for inclusion in an HCH bioremediation consortium and suggests that HDIPO4, IP26 and B90A would be appropriate candidates for inclusion.

Show MeSH

Related in: MedlinePlus

Genetic sequence and copy number variation oflingenes: The genetic divergence, as quantified by percentage nucleotide identity to the archetypal strain UT26, and copy number variation inlingenes across the nineSphingobiumstrains under study.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4289293&req=5

Fig8: Genetic sequence and copy number variation oflingenes: The genetic divergence, as quantified by percentage nucleotide identity to the archetypal strain UT26, and copy number variation inlingenes across the nineSphingobiumstrains under study.

Mentions: Among all the lin genes of the lower pathway, linF was the most highly conserved, as its amino acid sequence was 100% identical in all genomes (Figure 8). In the linDER operon, the set of linD genes similarly showed minimal divergence, with the IP26, RL3, and LL03 genes sharing a substitution of N82S, and additionally IP26 having a substitution Q30P. Further, linR and linE had very little divergence; linR diverged only in one substitution in HDIPO4 (L12P) and linE was 100% identical in all strains. This highlights the fact that the linDER operon, which makes up the backbone of the downstream HCH degradation pathway, remained highly stable during the course of evolution. A greater degree of the variation of this operon was found, however, in copy number, as RL3 and HDIPO4 housed three and two copies, respectively (Figure 8 & Additional file 1: Table S2).Figure 8


Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways.

Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R - BMC Genomics (2014)

Genetic sequence and copy number variation oflingenes: The genetic divergence, as quantified by percentage nucleotide identity to the archetypal strain UT26, and copy number variation inlingenes across the nineSphingobiumstrains under study.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4289293&req=5

Fig8: Genetic sequence and copy number variation oflingenes: The genetic divergence, as quantified by percentage nucleotide identity to the archetypal strain UT26, and copy number variation inlingenes across the nineSphingobiumstrains under study.
Mentions: Among all the lin genes of the lower pathway, linF was the most highly conserved, as its amino acid sequence was 100% identical in all genomes (Figure 8). In the linDER operon, the set of linD genes similarly showed minimal divergence, with the IP26, RL3, and LL03 genes sharing a substitution of N82S, and additionally IP26 having a substitution Q30P. Further, linR and linE had very little divergence; linR diverged only in one substitution in HDIPO4 (L12P) and linE was 100% identical in all strains. This highlights the fact that the linDER operon, which makes up the backbone of the downstream HCH degradation pathway, remained highly stable during the course of evolution. A greater degree of the variation of this operon was found, however, in copy number, as RL3 and HDIPO4 housed three and two copies, respectively (Figure 8 & Additional file 1: Table S2).Figure 8

Bottom Line: Genes associated with nitrogen stress response and two-component systems were found to be enriched.Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy.

View Article: PubMed Central - PubMed

Affiliation: Room No, 115, Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India. ruplal@gmail.com.

ABSTRACT

Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6).

Results: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. Additionally, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.

Conclusion: The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their arrangement with respect to IS6100 and evidence for potential plasmid content elucidate possible evolutionary acquisition mechanisms for this pathway. This study further opens the horizon for selection of bacterial strains for inclusion in an HCH bioremediation consortium and suggests that HDIPO4, IP26 and B90A would be appropriate candidates for inclusion.

Show MeSH
Related in: MedlinePlus