Limits...
Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, El-Masri B, Thornton P, Jain A, Wang S, Warlind D, Weng E, Parton W, Iversen CM, Gallet-Budynek A, McCarthy H, Finzi A, Hanson PJ, Prentice IC, Oren R, Norby RJ - New Phytol. (2014)

Bottom Line: Nonetheless, many models showed qualitative agreement with observed component processes.The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects.Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets.

View Article: PubMed Central - PubMed

Affiliation: Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany.

Show MeSH
Ambient plant nitrogen (N) uptake (fNup; a, b) and its response to elevated CO2 (c, d) at the Duke (a, c) and Oak Ridge National Laboratory (ORNL) (b, d) Free-Air CO2 Enrichment (FACE) experiments. The observations are across-plot averages, and the error bars denote ± 1SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4288990&req=5

fig03: Ambient plant nitrogen (N) uptake (fNup; a, b) and its response to elevated CO2 (c, d) at the Duke (a, c) and Oak Ridge National Laboratory (ORNL) (b, d) Free-Air CO2 Enrichment (FACE) experiments. The observations are across-plot averages, and the error bars denote ± 1SE.

Mentions: Observed ambient NPP and inferred fNup at Duke FACE were both slightly larger than at ORNL FACE (Figs3a,b), implying that the whole-plant NUE was similar between the sites (Fig.4) at 121 ± 2 g C g−1 N in the ambient plots (1997–2005 mean) for Duke FACE and 129 ± 13 g C g−1 N at ORNL. This similarity between sites is in contrast with an earlier study (Finzi et al., 2007), because the corrections in biomass estimates by McCarthy et al. (2010) resulted in a downward adjustment in the estimate of NUE at Duke Forest.


Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, El-Masri B, Thornton P, Jain A, Wang S, Warlind D, Weng E, Parton W, Iversen CM, Gallet-Budynek A, McCarthy H, Finzi A, Hanson PJ, Prentice IC, Oren R, Norby RJ - New Phytol. (2014)

Ambient plant nitrogen (N) uptake (fNup; a, b) and its response to elevated CO2 (c, d) at the Duke (a, c) and Oak Ridge National Laboratory (ORNL) (b, d) Free-Air CO2 Enrichment (FACE) experiments. The observations are across-plot averages, and the error bars denote ± 1SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4288990&req=5

fig03: Ambient plant nitrogen (N) uptake (fNup; a, b) and its response to elevated CO2 (c, d) at the Duke (a, c) and Oak Ridge National Laboratory (ORNL) (b, d) Free-Air CO2 Enrichment (FACE) experiments. The observations are across-plot averages, and the error bars denote ± 1SE.
Mentions: Observed ambient NPP and inferred fNup at Duke FACE were both slightly larger than at ORNL FACE (Figs3a,b), implying that the whole-plant NUE was similar between the sites (Fig.4) at 121 ± 2 g C g−1 N in the ambient plots (1997–2005 mean) for Duke FACE and 129 ± 13 g C g−1 N at ORNL. This similarity between sites is in contrast with an earlier study (Finzi et al., 2007), because the corrections in biomass estimates by McCarthy et al. (2010) resulted in a downward adjustment in the estimate of NUE at Duke Forest.

Bottom Line: Nonetheless, many models showed qualitative agreement with observed component processes.The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects.Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets.

View Article: PubMed Central - PubMed

Affiliation: Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany.

Show MeSH