Limits...
Genistein disrupts glucocorticoid receptor signaling in human uterine endometrial Ishikawa cells.

Whirledge S, Senbanjo LT, Cidlowski JA - Environ. Health Perspect. (2014)

Bottom Line: Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein.Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone.In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.

ABSTRACT

Background: The link between environmental estrogen exposure and defects in the female reproductive tract is well established. The phytoestrogen genistein is able to modulate uterine estrogen receptor (ER) activity, and dietary exposure is associated with uterine pathologies. Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein.

Objective: We evaluated the transcriptional response to genistein in Ishikawa cells and investigated the effects of genistein on GR-mediated target genes.

Methods: We used Ishikawa cells as a model system to identify novel targets of genistein and the synthetic glucocorticoid dexamethasone through whole genome microarray analysis. Common gene targets were defined and response patterns verified by quantitative real-time reverse-transcription polymerase chain reaction. The mechanism of transcriptional antagonism was determined for select genes.

Results: Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone. Furthermore, genistein altered glucocorticoid regulation of GR target genes. In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively.

Conclusions: Using Ishikawa cells, we observed that exposure to genistein resulted in distinct changes in gene expression and unique differences in the GR transcriptome.

Show MeSH

Related in: MedlinePlus

Microarray analysis revealed common and unique targets of Gen and Dex. (A) Number of probes regulated by Dex, Gen, and Dex + Gen from three biological replicates organized as either induced (red) or repressed (green) according to treatment group. (B) Venn diagram showing the number of probes that were statistically different (p < 0.01) between treatment groups. (C) The top five induced and repressed co-regulated by Dex, Gen, and Dex + Gen organized by treatment group; the expression (Exp) chart illustrates the relative fold change from vehicle for the Dex, Gen, and Dex + Gen treatment groups. (D) Dex, Gen, and Dex + Gen co-regulated genes were separated by direction of regulation. (E) One representative gene for each discovered pattern of regulation is displayed (induced, repressed, anti-correlated, and antagonized, from left to right).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4286279&req=5

f2: Microarray analysis revealed common and unique targets of Gen and Dex. (A) Number of probes regulated by Dex, Gen, and Dex + Gen from three biological replicates organized as either induced (red) or repressed (green) according to treatment group. (B) Venn diagram showing the number of probes that were statistically different (p < 0.01) between treatment groups. (C) The top five induced and repressed co-regulated by Dex, Gen, and Dex + Gen organized by treatment group; the expression (Exp) chart illustrates the relative fold change from vehicle for the Dex, Gen, and Dex + Gen treatment groups. (D) Dex, Gen, and Dex + Gen co-regulated genes were separated by direction of regulation. (E) One representative gene for each discovered pattern of regulation is displayed (induced, repressed, anti-correlated, and antagonized, from left to right).

Mentions: Based on the unique transcriptional profile of Gen, microarray analysis was performed to identify genes regulated by both Dex and Gen in Ishikawa cells. Comparison of significantly regulated probes identified 5,893 genes regulated by Dex, Gen, or Dex + Gen. Gene profiles are shown as a heat map representing raw data (Figure 2A). Using Venn diagram analysis, we compared the gene lists to identify genes that are common and unique to each of the three treatment groups (Figure 2B). Gen treatment regulated 932 genes, Dex treatment regulated 1,633 genes; however, 3,328 genes were regulated only by the combination of Dex + Gen. Unexpectedly, two-thirds of the Dex + Gen genes were regulated only in the presence of Dex and Gen together and not by Dex or Gen alone, representing previously unidentified molecular gene targets.


Genistein disrupts glucocorticoid receptor signaling in human uterine endometrial Ishikawa cells.

Whirledge S, Senbanjo LT, Cidlowski JA - Environ. Health Perspect. (2014)

Microarray analysis revealed common and unique targets of Gen and Dex. (A) Number of probes regulated by Dex, Gen, and Dex + Gen from three biological replicates organized as either induced (red) or repressed (green) according to treatment group. (B) Venn diagram showing the number of probes that were statistically different (p < 0.01) between treatment groups. (C) The top five induced and repressed co-regulated by Dex, Gen, and Dex + Gen organized by treatment group; the expression (Exp) chart illustrates the relative fold change from vehicle for the Dex, Gen, and Dex + Gen treatment groups. (D) Dex, Gen, and Dex + Gen co-regulated genes were separated by direction of regulation. (E) One representative gene for each discovered pattern of regulation is displayed (induced, repressed, anti-correlated, and antagonized, from left to right).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4286279&req=5

f2: Microarray analysis revealed common and unique targets of Gen and Dex. (A) Number of probes regulated by Dex, Gen, and Dex + Gen from three biological replicates organized as either induced (red) or repressed (green) according to treatment group. (B) Venn diagram showing the number of probes that were statistically different (p < 0.01) between treatment groups. (C) The top five induced and repressed co-regulated by Dex, Gen, and Dex + Gen organized by treatment group; the expression (Exp) chart illustrates the relative fold change from vehicle for the Dex, Gen, and Dex + Gen treatment groups. (D) Dex, Gen, and Dex + Gen co-regulated genes were separated by direction of regulation. (E) One representative gene for each discovered pattern of regulation is displayed (induced, repressed, anti-correlated, and antagonized, from left to right).
Mentions: Based on the unique transcriptional profile of Gen, microarray analysis was performed to identify genes regulated by both Dex and Gen in Ishikawa cells. Comparison of significantly regulated probes identified 5,893 genes regulated by Dex, Gen, or Dex + Gen. Gene profiles are shown as a heat map representing raw data (Figure 2A). Using Venn diagram analysis, we compared the gene lists to identify genes that are common and unique to each of the three treatment groups (Figure 2B). Gen treatment regulated 932 genes, Dex treatment regulated 1,633 genes; however, 3,328 genes were regulated only by the combination of Dex + Gen. Unexpectedly, two-thirds of the Dex + Gen genes were regulated only in the presence of Dex and Gen together and not by Dex or Gen alone, representing previously unidentified molecular gene targets.

Bottom Line: Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein.Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone.In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.

ABSTRACT

Background: The link between environmental estrogen exposure and defects in the female reproductive tract is well established. The phytoestrogen genistein is able to modulate uterine estrogen receptor (ER) activity, and dietary exposure is associated with uterine pathologies. Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein.

Objective: We evaluated the transcriptional response to genistein in Ishikawa cells and investigated the effects of genistein on GR-mediated target genes.

Methods: We used Ishikawa cells as a model system to identify novel targets of genistein and the synthetic glucocorticoid dexamethasone through whole genome microarray analysis. Common gene targets were defined and response patterns verified by quantitative real-time reverse-transcription polymerase chain reaction. The mechanism of transcriptional antagonism was determined for select genes.

Results: Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone. Furthermore, genistein altered glucocorticoid regulation of GR target genes. In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively.

Conclusions: Using Ishikawa cells, we observed that exposure to genistein resulted in distinct changes in gene expression and unique differences in the GR transcriptome.

Show MeSH
Related in: MedlinePlus