Limits...
Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

Jones A - Front Integr Neurosci (2015)

Bottom Line: Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks.Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions.Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Middlesex University London, UK.

ABSTRACT
Selective attention to a spatial location has shown enhanced perception and facilitate behavior for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of sync with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either color or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory) was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late) with the rhythmic cue. Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced behavior independently.

No MeSH data available.


Related in: MedlinePlus

Crossmodal visual cue and auditory targets task (VA). Mean response times (with standard error bars) for tones presented at spatially attended (light gray) and unattended side (dark gray), separately for early, sync and late conditions in relation to the visually presented rhythm (the cue). Response times were significantly faster for spatially attended over unattended targets and a main effect of Temporal expectancy showed in sync and late targets were faster than early targets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4285055&req=5

Figure 5: Crossmodal visual cue and auditory targets task (VA). Mean response times (with standard error bars) for tones presented at spatially attended (light gray) and unattended side (dark gray), separately for early, sync and late conditions in relation to the visually presented rhythm (the cue). Response times were significantly faster for spatially attended over unattended targets and a main effect of Temporal expectancy showed in sync and late targets were faster than early targets.

Mentions: A main effect of Spatial attention (F(1,15) = 6.83, p = 0.02, = 0.31) revealed attended trials were faster (326.6 ms) compared to unattended trials (349.6 ms) (see Figure 5). There was also a main effect of Temporal expectancy (F(2,30) = 9.75, p = 0.001, = 0.39) and pairwise-comparisons (Bonferroni corrected) showed in sync (370.6 ms) and late targets (354.3 ms) were faster than early target (382.4 ms) (p = 0.02 and p < 0.001 respectively). There was no Spatial attention*Temporal expectancy interaction (p = 0.72, = 0.02).


Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

Jones A - Front Integr Neurosci (2015)

Crossmodal visual cue and auditory targets task (VA). Mean response times (with standard error bars) for tones presented at spatially attended (light gray) and unattended side (dark gray), separately for early, sync and late conditions in relation to the visually presented rhythm (the cue). Response times were significantly faster for spatially attended over unattended targets and a main effect of Temporal expectancy showed in sync and late targets were faster than early targets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4285055&req=5

Figure 5: Crossmodal visual cue and auditory targets task (VA). Mean response times (with standard error bars) for tones presented at spatially attended (light gray) and unattended side (dark gray), separately for early, sync and late conditions in relation to the visually presented rhythm (the cue). Response times were significantly faster for spatially attended over unattended targets and a main effect of Temporal expectancy showed in sync and late targets were faster than early targets.
Mentions: A main effect of Spatial attention (F(1,15) = 6.83, p = 0.02, = 0.31) revealed attended trials were faster (326.6 ms) compared to unattended trials (349.6 ms) (see Figure 5). There was also a main effect of Temporal expectancy (F(2,30) = 9.75, p = 0.001, = 0.39) and pairwise-comparisons (Bonferroni corrected) showed in sync (370.6 ms) and late targets (354.3 ms) were faster than early target (382.4 ms) (p = 0.02 and p < 0.001 respectively). There was no Spatial attention*Temporal expectancy interaction (p = 0.72, = 0.02).

Bottom Line: Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks.Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions.Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Middlesex University London, UK.

ABSTRACT
Selective attention to a spatial location has shown enhanced perception and facilitate behavior for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of sync with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either color or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory) was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late) with the rhythmic cue. Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced behavior independently.

No MeSH data available.


Related in: MedlinePlus