Limits...
Prehospital identification of trauma patients with early acute coagulopathy and massive bleeding: results of a prospective non-interventional clinical trial evaluating the Trauma Induced Coagulopathy Clinical Score (TICCS).

Tonglet ML, Minon JM, Seidel L, Poplavsky JL, Vergnion M - Crit Care (2014)

Bottom Line: Of the 82 remaining patients, 8 needed DCR and 74 did not.With receiver operating characteristic curve analysis, TICCS proved to be a powerful discriminant test (area under the curve = 0.98; 95% CI: 0.92 to 1.0).In this study of blunt trauma patients, TICCS was able to discriminate between patients with and without need for DCR.

View Article: PubMed Central - PubMed

Affiliation: Emergency Medicine, Trauma and Bleeding Care, CHR de la Citadelle, boulevard du 12eme de ligne, 1, 4000, Liège, Belgium. tongletm@yahoo.com.

ABSTRACT

Introduction: Identifying patients who need damage control resuscitation (DCR) early after trauma is pivotal for adequate management of their critical condition. Several trauma-scoring systems have been developed to identify such patients, but most of them are not simple enough to be used in prehospital settings in the early post-traumatic phase. The Trauma Induced Coagulopathy Clinical Score (TICCS) is an easy-to-measure and strictly clinical trauma score developed to meet this medical need.

Methods: TICCS is a 3-item clinical score (range: 0 to 18) based on the assessment of general severity, blood pressure and extent of body injury and calculated by paramedics on-site for patients with severe trauma. This non-interventional prospective study was designed to assess the ability of TICCS to discern patients who need DCR. These patients were patients with early acute coagulopathy of trauma (EACT), haemorrhagic shock, massive transfusion and surgical or endovascular haemostasis during hospitalization. Diagnosis of EACT was assessed by both thromboelastometry and conventional coagulation tests.

Results: During an 18-month period, 89 severe trauma patients admitted to the general emergency unit at our hospital were enrolled in the study, but 7 were excluded for protocol violations. Of the 82 remaining patients, 8 needed DCR and 74 did not. With receiver operating characteristic curve analysis, TICCS proved to be a powerful discriminant test (area under the curve = 0.98; 95% CI: 0.92 to 1.0). A cutoff of 10 on the TICCS scale provided the best balance between sensitivity (100%; 95% CI: 53.9 to 100) and specificity (95.9%; 95% CI: 88.2 to 99.2). The positive predictive value was 72.7%, and the negative predictive value was 100.0%.

Conclusion: TICCS can be easily and rapidly measured by paramedics at the trauma site. In this study of blunt trauma patients, TICCS was able to discriminate between patients with and without need for DCR. TICCS on-site evaluation should allow initiation of optimal care immediately upon hospital admission of patients with severe trauma in need of DCR. However, a larger multicentre prospective study is needed for in-depth validation of TICCS.

Trial registration: Clinicaltrials.gov ID: NCT02132208 (registered 6 May 2014).

Show MeSH

Related in: MedlinePlus

TICCS values in both subgroups. TICCS, Trauma Induced Coagulopathy Clinical Score.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4279963&req=5

Fig1: TICCS values in both subgroups. TICCS, Trauma Induced Coagulopathy Clinical Score.

Mentions: Among the 82 patients, 74 were classified as ‘nonsevere’ and 8 as ‘severe’ (in need of DCR). The median (IQR) TICCS was 3 [3-5] for ‘nonsevere’ patients and 12 [12-15] for ‘severe’ patients (Figure 1). The two groups differed significantly (P = 0.0011). ROC curve analysis showed that TICCS was able to discriminate between severe and nonsevere patients with an AUC of 0.98 (95% CI: 0.92 to 1.0). Further, a TICCS cutoff value of 10 yielded the best trade-off between true positives and false positives. Table 3 displays the characteristics of the study patients according to TICCS <10 and TICCS ≥10. The corresponding sensitivity and specificity of TICCS were 100% (95% CI: 53.9 to 100) and 95.9% (95% CI: 88.2 to 99.2), respectively, and the PPV and NPV were equal to 72.7% (95% CI: 43.3 to 68.6) and 100% (95% CI: 94.7 to 100), respectively. These figures are superior to those obtained for the other scores (see Table 4 and Figure 2). The three false-positive patients (TICCS ≥10 but ‘nonsevere’) had EACT but did not meet all three clinical criteria (Table 5).Figure 1


Prehospital identification of trauma patients with early acute coagulopathy and massive bleeding: results of a prospective non-interventional clinical trial evaluating the Trauma Induced Coagulopathy Clinical Score (TICCS).

Tonglet ML, Minon JM, Seidel L, Poplavsky JL, Vergnion M - Crit Care (2014)

TICCS values in both subgroups. TICCS, Trauma Induced Coagulopathy Clinical Score.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4279963&req=5

Fig1: TICCS values in both subgroups. TICCS, Trauma Induced Coagulopathy Clinical Score.
Mentions: Among the 82 patients, 74 were classified as ‘nonsevere’ and 8 as ‘severe’ (in need of DCR). The median (IQR) TICCS was 3 [3-5] for ‘nonsevere’ patients and 12 [12-15] for ‘severe’ patients (Figure 1). The two groups differed significantly (P = 0.0011). ROC curve analysis showed that TICCS was able to discriminate between severe and nonsevere patients with an AUC of 0.98 (95% CI: 0.92 to 1.0). Further, a TICCS cutoff value of 10 yielded the best trade-off between true positives and false positives. Table 3 displays the characteristics of the study patients according to TICCS <10 and TICCS ≥10. The corresponding sensitivity and specificity of TICCS were 100% (95% CI: 53.9 to 100) and 95.9% (95% CI: 88.2 to 99.2), respectively, and the PPV and NPV were equal to 72.7% (95% CI: 43.3 to 68.6) and 100% (95% CI: 94.7 to 100), respectively. These figures are superior to those obtained for the other scores (see Table 4 and Figure 2). The three false-positive patients (TICCS ≥10 but ‘nonsevere’) had EACT but did not meet all three clinical criteria (Table 5).Figure 1

Bottom Line: Of the 82 remaining patients, 8 needed DCR and 74 did not.With receiver operating characteristic curve analysis, TICCS proved to be a powerful discriminant test (area under the curve = 0.98; 95% CI: 0.92 to 1.0).In this study of blunt trauma patients, TICCS was able to discriminate between patients with and without need for DCR.

View Article: PubMed Central - PubMed

Affiliation: Emergency Medicine, Trauma and Bleeding Care, CHR de la Citadelle, boulevard du 12eme de ligne, 1, 4000, Liège, Belgium. tongletm@yahoo.com.

ABSTRACT

Introduction: Identifying patients who need damage control resuscitation (DCR) early after trauma is pivotal for adequate management of their critical condition. Several trauma-scoring systems have been developed to identify such patients, but most of them are not simple enough to be used in prehospital settings in the early post-traumatic phase. The Trauma Induced Coagulopathy Clinical Score (TICCS) is an easy-to-measure and strictly clinical trauma score developed to meet this medical need.

Methods: TICCS is a 3-item clinical score (range: 0 to 18) based on the assessment of general severity, blood pressure and extent of body injury and calculated by paramedics on-site for patients with severe trauma. This non-interventional prospective study was designed to assess the ability of TICCS to discern patients who need DCR. These patients were patients with early acute coagulopathy of trauma (EACT), haemorrhagic shock, massive transfusion and surgical or endovascular haemostasis during hospitalization. Diagnosis of EACT was assessed by both thromboelastometry and conventional coagulation tests.

Results: During an 18-month period, 89 severe trauma patients admitted to the general emergency unit at our hospital were enrolled in the study, but 7 were excluded for protocol violations. Of the 82 remaining patients, 8 needed DCR and 74 did not. With receiver operating characteristic curve analysis, TICCS proved to be a powerful discriminant test (area under the curve = 0.98; 95% CI: 0.92 to 1.0). A cutoff of 10 on the TICCS scale provided the best balance between sensitivity (100%; 95% CI: 53.9 to 100) and specificity (95.9%; 95% CI: 88.2 to 99.2). The positive predictive value was 72.7%, and the negative predictive value was 100.0%.

Conclusion: TICCS can be easily and rapidly measured by paramedics at the trauma site. In this study of blunt trauma patients, TICCS was able to discriminate between patients with and without need for DCR. TICCS on-site evaluation should allow initiation of optimal care immediately upon hospital admission of patients with severe trauma in need of DCR. However, a larger multicentre prospective study is needed for in-depth validation of TICCS.

Trial registration: Clinicaltrials.gov ID: NCT02132208 (registered 6 May 2014).

Show MeSH
Related in: MedlinePlus