Limits...
Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes.

Kim KM, Choi MH, Lee JK, Jeong J, Kim YR, Kim MK, Paek SM, Oh JM - Int J Nanomedicine (2014)

Bottom Line: The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding.Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about -40 mV) or positive (about +25 mV).Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Gangwon-do, South Korea.

ABSTRACT
In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about -40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties.

No MeSH data available.


Hydrodynamic size of (A) ZnOSM20(−), (B) ZnOSM20(+), (C) ZnOAE100(−), and (D) ZnOAE100(+) at pH 7.0±0.3 (mean ± standard deviation of n=3).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4279853&req=5

f8-ijn-9-041: Hydrodynamic size of (A) ZnOSM20(−), (B) ZnOSM20(+), (C) ZnOAE100(−), and (D) ZnOAE100(+) at pH 7.0±0.3 (mean ± standard deviation of n=3).

Mentions: Among the important nanoparticle parameters in the suspension state, the hydrodynamic size and its distribution are considered important. The hydrodynamic sizes and particle size distribution patterns for pristine ZnO and the four types of coated ZnO nanoparticles in deionized water are shown in Figures 8 and S7, respectively. The average hydrodynamic sizes of the four samples (393, 368, 237, and 632 nm for ZnOSM20(−), ZnOSM20(+), ZnOAE100(−), and ZnOAE100(+), respectively) were larger than the primary particle size obtained by TEM and the crystallite size calculated from XRD. The hydrodynamic sizes of ZnOSM20(−), ZnOSM20(+), and ZnOAE100(−) were distributed in the range of 200–500 nm, while those of ZnOAE100(+) showed a wide distribution in the range of 300–1,000 nm.


Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes.

Kim KM, Choi MH, Lee JK, Jeong J, Kim YR, Kim MK, Paek SM, Oh JM - Int J Nanomedicine (2014)

Hydrodynamic size of (A) ZnOSM20(−), (B) ZnOSM20(+), (C) ZnOAE100(−), and (D) ZnOAE100(+) at pH 7.0±0.3 (mean ± standard deviation of n=3).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4279853&req=5

f8-ijn-9-041: Hydrodynamic size of (A) ZnOSM20(−), (B) ZnOSM20(+), (C) ZnOAE100(−), and (D) ZnOAE100(+) at pH 7.0±0.3 (mean ± standard deviation of n=3).
Mentions: Among the important nanoparticle parameters in the suspension state, the hydrodynamic size and its distribution are considered important. The hydrodynamic sizes and particle size distribution patterns for pristine ZnO and the four types of coated ZnO nanoparticles in deionized water are shown in Figures 8 and S7, respectively. The average hydrodynamic sizes of the four samples (393, 368, 237, and 632 nm for ZnOSM20(−), ZnOSM20(+), ZnOAE100(−), and ZnOAE100(+), respectively) were larger than the primary particle size obtained by TEM and the crystallite size calculated from XRD. The hydrodynamic sizes of ZnOSM20(−), ZnOSM20(+), and ZnOAE100(−) were distributed in the range of 200–500 nm, while those of ZnOAE100(+) showed a wide distribution in the range of 300–1,000 nm.

Bottom Line: The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding.Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about -40 mV) or positive (about +25 mV).Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Gangwon-do, South Korea.

ABSTRACT
In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about -40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties.

No MeSH data available.