Limits...
Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography.

Arora PK, Bae H - Int J Anal Chem (2014)

Bottom Line: Arthrobacter sp.SPG transformed indole completely in the presence of an additional carbon source.High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products.

View Article: PubMed Central - PubMed

Affiliation: School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea.

ABSTRACT
Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium.

No MeSH data available.


Related in: MedlinePlus

GC-MS analysis showing mass spectrum of metabolite I (indole-3-acetic acid, (a)), metabolite II (indole-3-glyoxylic acid, (b)), and metabolite III (indole-3-aldehyde, (c)).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4274814&req=5

fig3: GC-MS analysis showing mass spectrum of metabolite I (indole-3-acetic acid, (a)), metabolite II (indole-3-glyoxylic acid, (b)), and metabolite III (indole-3-aldehyde, (c)).

Mentions: GC-MS analysis showed that the mass fragment patterns of metabolites I, II, and III corresponded to those of authentic standards of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde, respectively (Figure 3). The mass spectrum of metabolite I had molecular ion at m/z 175 and quinolinium ion at m/z 130 (Figure 3(a)). The mass spectrum of metabolite II showed a molecular ion peak at m/z 189 and other fragments were observed at m/z values of 144, 116, 89, and 63 (Figure 3(b)). The mass spectrum of metabolite III showed a molecular ion at m/z 144 and the major fragments were observed at m/z values of 116, 89, and 63 (Figure 3(c)). The results of GC-MS confirmed the identities of metabolites I, II, and III as indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde, respectively.


Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography.

Arora PK, Bae H - Int J Anal Chem (2014)

GC-MS analysis showing mass spectrum of metabolite I (indole-3-acetic acid, (a)), metabolite II (indole-3-glyoxylic acid, (b)), and metabolite III (indole-3-aldehyde, (c)).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4274814&req=5

fig3: GC-MS analysis showing mass spectrum of metabolite I (indole-3-acetic acid, (a)), metabolite II (indole-3-glyoxylic acid, (b)), and metabolite III (indole-3-aldehyde, (c)).
Mentions: GC-MS analysis showed that the mass fragment patterns of metabolites I, II, and III corresponded to those of authentic standards of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde, respectively (Figure 3). The mass spectrum of metabolite I had molecular ion at m/z 175 and quinolinium ion at m/z 130 (Figure 3(a)). The mass spectrum of metabolite II showed a molecular ion peak at m/z 189 and other fragments were observed at m/z values of 144, 116, 89, and 63 (Figure 3(b)). The mass spectrum of metabolite III showed a molecular ion at m/z 144 and the major fragments were observed at m/z values of 116, 89, and 63 (Figure 3(c)). The results of GC-MS confirmed the identities of metabolites I, II, and III as indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde, respectively.

Bottom Line: Arthrobacter sp.SPG transformed indole completely in the presence of an additional carbon source.High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products.

View Article: PubMed Central - PubMed

Affiliation: School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea.

ABSTRACT
Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium.

No MeSH data available.


Related in: MedlinePlus