Limits...
Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones.

Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L - J Transl Med (2014)

Bottom Line: CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively.Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects.This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization.

View Article: PubMed Central - PubMed

Affiliation: Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. migliettariccardo@gmail.com.

ABSTRACT

Background: Early events in HIV infection are still poorly understood; virus derived from acute infections, the transmitted/founders IMCs, could provide more reliable information as they represent strains that established HIV infection in vivo, and therefore are investigated to elucidate potentially shared biological features.

Methods: This study examined synergy in neutralization by six monoclonal antibodies targeting different domains in gp120 and gp41 and assayed in pairwise combination against 11 HIV-1 clade B strains, either Env pseudoviruses (PV, n = 5) or transmitted/founder infectious molecular clones (T/F IMCs, n = 6). Three of the early-infection env tested as PV were juxtaposed with T/F viruses derived from the same three patients, respectively.

Results: All antibodies reaching IC50 were assayed pairwise (n = 50). T/F IMCs showed overall lower sensitivity to neutralization by single antibodies than PV, including within the three patient-matched pairs. Remarkably, combination index (CI) calculated using the Chow and Talalay method indicated synergy (CI < 0.9) in 42 data sets, and occurred in T/F IMC at similar proportions (15 of 17 antibody-T/F IMC combinations tested) as in pseudoviruses (27 of 33). CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively. Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects. Variability in neutralization was mostly observed on pseudovirus isolates, suggesting that factors other than virus isolation technology, such as env conformation, epitope accessibility and antibody concentration, are likely to affect polyclonal neutralization.

Conclusions: The findings from this study suggest that inhibitory activity of bNAbs can be further augmented through appropriate combination, even against viruses representing circulating strains, which are likely to exhibit a less sensitive Tier 2 neutralization phenotype. This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization.

No MeSH data available.


Related in: MedlinePlus

Heat map of the IC50 values obtained with the antibodies tested individually against all virus strains. The x axis of the color key represents the IC50 range in logarithmic scale. Darker cells (blue and green) indicate lower IC50 values and potent neutralization. Lighter cells indicate no detectable or relatively weak neutralization. The non-trasformed IC50 values are indicate in each field and are expressed in ug/mL. The names of T/F IMCs are provided. Pseudoviruses (PV) are indicated by the respective env clone identifier.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4274758&req=5

Fig1: Heat map of the IC50 values obtained with the antibodies tested individually against all virus strains. The x axis of the color key represents the IC50 range in logarithmic scale. Darker cells (blue and green) indicate lower IC50 values and potent neutralization. Lighter cells indicate no detectable or relatively weak neutralization. The non-trasformed IC50 values are indicate in each field and are expressed in ug/mL. The names of T/F IMCs are provided. Pseudoviruses (PV) are indicated by the respective env clone identifier.

Mentions: Prior to conducting combinatorial inhibition assays, all antibodies were first assayed in individual neutralization assays against each virus in the panel, in order to assess their respective neutralization potency (IC50) against each PV and IMC HIV strain. As shown in Figure 1, only b12 achieved 50% neutralization in 10 out of 11 viruses, ( 5/5 pseudoviruses and 5/6 T/F IMC). The Nabs 2 F5 and 4E10 neutralized 7 and 8 viruses, respectively, both neutralized 3/6 T/F IMC, and 4/5 and 5/5 pseudoviruses, respectively, while other antibodies achieved 50% neutralization in a lower number of isolates. The 2G12 antibody only achieved 50% inhibition in 1/5 and 1/6 virus isolates, respectively.Figure 1


Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones.

Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L - J Transl Med (2014)

Heat map of the IC50 values obtained with the antibodies tested individually against all virus strains. The x axis of the color key represents the IC50 range in logarithmic scale. Darker cells (blue and green) indicate lower IC50 values and potent neutralization. Lighter cells indicate no detectable or relatively weak neutralization. The non-trasformed IC50 values are indicate in each field and are expressed in ug/mL. The names of T/F IMCs are provided. Pseudoviruses (PV) are indicated by the respective env clone identifier.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4274758&req=5

Fig1: Heat map of the IC50 values obtained with the antibodies tested individually against all virus strains. The x axis of the color key represents the IC50 range in logarithmic scale. Darker cells (blue and green) indicate lower IC50 values and potent neutralization. Lighter cells indicate no detectable or relatively weak neutralization. The non-trasformed IC50 values are indicate in each field and are expressed in ug/mL. The names of T/F IMCs are provided. Pseudoviruses (PV) are indicated by the respective env clone identifier.
Mentions: Prior to conducting combinatorial inhibition assays, all antibodies were first assayed in individual neutralization assays against each virus in the panel, in order to assess their respective neutralization potency (IC50) against each PV and IMC HIV strain. As shown in Figure 1, only b12 achieved 50% neutralization in 10 out of 11 viruses, ( 5/5 pseudoviruses and 5/6 T/F IMC). The Nabs 2 F5 and 4E10 neutralized 7 and 8 viruses, respectively, both neutralized 3/6 T/F IMC, and 4/5 and 5/5 pseudoviruses, respectively, while other antibodies achieved 50% neutralization in a lower number of isolates. The 2G12 antibody only achieved 50% inhibition in 1/5 and 1/6 virus isolates, respectively.Figure 1

Bottom Line: CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively.Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects.This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization.

View Article: PubMed Central - PubMed

Affiliation: Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. migliettariccardo@gmail.com.

ABSTRACT

Background: Early events in HIV infection are still poorly understood; virus derived from acute infections, the transmitted/founders IMCs, could provide more reliable information as they represent strains that established HIV infection in vivo, and therefore are investigated to elucidate potentially shared biological features.

Methods: This study examined synergy in neutralization by six monoclonal antibodies targeting different domains in gp120 and gp41 and assayed in pairwise combination against 11 HIV-1 clade B strains, either Env pseudoviruses (PV, n = 5) or transmitted/founder infectious molecular clones (T/F IMCs, n = 6). Three of the early-infection env tested as PV were juxtaposed with T/F viruses derived from the same three patients, respectively.

Results: All antibodies reaching IC50 were assayed pairwise (n = 50). T/F IMCs showed overall lower sensitivity to neutralization by single antibodies than PV, including within the three patient-matched pairs. Remarkably, combination index (CI) calculated using the Chow and Talalay method indicated synergy (CI < 0.9) in 42 data sets, and occurred in T/F IMC at similar proportions (15 of 17 antibody-T/F IMC combinations tested) as in pseudoviruses (27 of 33). CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively. Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects. Variability in neutralization was mostly observed on pseudovirus isolates, suggesting that factors other than virus isolation technology, such as env conformation, epitope accessibility and antibody concentration, are likely to affect polyclonal neutralization.

Conclusions: The findings from this study suggest that inhibitory activity of bNAbs can be further augmented through appropriate combination, even against viruses representing circulating strains, which are likely to exhibit a less sensitive Tier 2 neutralization phenotype. This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization.

No MeSH data available.


Related in: MedlinePlus