Limits...
Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

Zhang X, Wang L, Xu X, Cai C, Guo W - BMC Plant Biol. (2014)

Bottom Line: Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen.Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified.This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China. zhangxuey89@163.com.

ABSTRACT

Background: Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported.

Results: By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen.

Conclusions: This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

Show MeSH

Related in: MedlinePlus

Comparison of the amino acid sequences of GrMAPKs. Roman numerals indicate regions containing the 11 domains (I–XI) found in the cotton PK subdomains. The A-Loop, CD-domain and phosphorylation-activation motif (TEY and TDY) are indicated with red boxes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4270029&req=5

Fig2: Comparison of the amino acid sequences of GrMAPKs. Roman numerals indicate regions containing the 11 domains (I–XI) found in the cotton PK subdomains. The A-Loop, CD-domain and phosphorylation-activation motif (TEY and TDY) are indicated with red boxes.

Mentions: Alignment of GrMAPK amino acid sequences revealed that all of the GrMAPK proteins contain 11 domains (I–XI; Figure 2). TEY or TDY motifs of GrMAPKs are located in the activation loop between kinase subdomain VII and VIII. All GrMAPK protein sequences contain four types of special subdomains, including the active site, ATP binding site, substrate-binding site and activation loop (A-loop). Phylogenetic analysis indicated that GrMAPK could be divided into four major groups (A, B, C and D), with five members in group A, seven in group B, six in group C and 10 in group D. GrMAPKs in subgroup A, B, C possess a Thy-Glu-Tyr (TEY) and a short C-terminus containing a common docking (CD) domain consisting of the sequence [LHY]Dxx[DE]EpxC, whereas those of subgroup D possess a Thr-Asp-Tyr (TDY) activation domain, without a CD domain but with a relatively long C-terminal region.Figure 2


Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

Zhang X, Wang L, Xu X, Cai C, Guo W - BMC Plant Biol. (2014)

Comparison of the amino acid sequences of GrMAPKs. Roman numerals indicate regions containing the 11 domains (I–XI) found in the cotton PK subdomains. The A-Loop, CD-domain and phosphorylation-activation motif (TEY and TDY) are indicated with red boxes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4270029&req=5

Fig2: Comparison of the amino acid sequences of GrMAPKs. Roman numerals indicate regions containing the 11 domains (I–XI) found in the cotton PK subdomains. The A-Loop, CD-domain and phosphorylation-activation motif (TEY and TDY) are indicated with red boxes.
Mentions: Alignment of GrMAPK amino acid sequences revealed that all of the GrMAPK proteins contain 11 domains (I–XI; Figure 2). TEY or TDY motifs of GrMAPKs are located in the activation loop between kinase subdomain VII and VIII. All GrMAPK protein sequences contain four types of special subdomains, including the active site, ATP binding site, substrate-binding site and activation loop (A-loop). Phylogenetic analysis indicated that GrMAPK could be divided into four major groups (A, B, C and D), with five members in group A, seven in group B, six in group C and 10 in group D. GrMAPKs in subgroup A, B, C possess a Thy-Glu-Tyr (TEY) and a short C-terminus containing a common docking (CD) domain consisting of the sequence [LHY]Dxx[DE]EpxC, whereas those of subgroup D possess a Thr-Asp-Tyr (TDY) activation domain, without a CD domain but with a relatively long C-terminal region.Figure 2

Bottom Line: Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen.Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified.This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China. zhangxuey89@163.com.

ABSTRACT

Background: Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported.

Results: By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen.

Conclusions: This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

Show MeSH
Related in: MedlinePlus